## Paths and cycles in tournaments

HTML articles powered by AMS MathViewer

- by Andrew Thomason PDF
- Trans. Amer. Math. Soc.
**296**(1986), 167-180 Request permission

## Abstract:

Sufficient conditions are given for the existence of an oriented path with given end vertices in a tournament. As a consequence a conjecture of Rosenfeld is established. This states that if $n$ is large enough, then every non-strongly oriented cycle of order $n$ is contained in every tournament of order $n$.## References

- Brian Alspach and Moshe Rosenfeld,
*Realization of certain generalized paths in tournaments*, Discrete Math.**34**(1981), no. 2, 199–202. MR**611433**, DOI 10.1016/0012-365X(81)90068-6 - Abdelhamid Benhocine and A. PawełWojda,
*On the existence of specified cycles in a tournament*, J. Graph Theory**7**(1983), no. 4, 469–473. MR**722064**, DOI 10.1002/jgt.3190070413 - Béla Bollobás,
*Extremal graph theory*, London Mathematical Society Monographs, vol. 11, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR**506522** - Rodney Forcade,
*Parity of paths and circuits in tournaments*, Discrete Math.**6**(1973), 115–118. MR**319811**, DOI 10.1016/0012-365X(73)90041-1 - Branko Grünbaum,
*Antidirected Hamiltonian paths in tournaments*, J. Combinatorial Theory Ser. B**11**(1971), 249–257. MR**291022**, DOI 10.1016/0095-8956(71)90035-9 - M.-C. Heydemann, D. Sotteau, and C. Thomassen,
*Orientations of Hamiltonian cycles in digraphs*, Ars Combin.**14**(1982), 3–8. MR**683972**
K. B. Reid and N. C. Wormald, - M. Rosenfeld,
*Antidirected Hamiltonian paths in tournaments*, J. Combinatorial Theory Ser. B**12**(1972), 93–99. MR**285452**, DOI 10.1016/0095-8956(72)90035-4 - M. Rosenfeld,
*Antidirected Hamiltonian circuits in tournaments*, J. Combinatorial Theory Ser. B**16**(1974), 234–242. MR**340101**, DOI 10.1016/0095-8956(74)90069-0 - H. Joseph Straight,
*The existence of certain types of semiwalks in tournaments*, Congr. Numer.**29**(1980), 901–908. MR**608485** - Carsten Thomassen,
*Antidirected Hamilton circuits and paths in tournaments*, Math. Ann.**201**(1973), 231–238. MR**349467**, DOI 10.1007/BF01427945

*Embedding oriented*$n$-

*trees in tournaments*(to appear).

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**296**(1986), 167-180 - MSC: Primary 05C20; Secondary 05C38
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837805-6
- MathSciNet review: 837805