Equivariant bundles and cohomology
HTML articles powered by AMS MathViewer
- by A. Kozlowski
- Trans. Amer. Math. Soc. 296 (1986), 181-190
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837806-8
- PDF | Request permission
Abstract:
Let $G$ be a topological group, $A$ an abelian topological group on which $G$ acts continuously and $X$ a $G$-space. We define "equivariant cohomology groups" of $X$ with coefficients in $A$, $H_G^i(X;A)$, for $i \geq 0$ which generalize Graeme Segal’s continuous cohomology of the topological group $G$ with coefficients in $A$. In particular we have $H_G^1(X;A) \simeq$ equivalence classes of principal $(G,A)$-bundles over $X$. We show that when $G$ is a compact Lie group and $A$ an abelian Lie group we have for $i > 1\;H_G^i(X;A) \simeq {H^i}(EG{ \times _G}X;\tau A)$ where $\tau A$ is the sheaf of germs of sections of the bundle $(X \times EG \times A)/G \to (X \times EG)/G$. For $i = 1$ and the trivial action of $G$ on $A$ this is a theorem of Lashof, May and Segal.References
- Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0221500
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Edward Bierstone, The equivariant covering homotopy property for differentiable $G$-fibre bundles, J. Differential Geometry 8 (1973), 615–622. MR 341509
- David A. Buchsbaum, A note on homology in categories, Ann. of Math. (2) 69 (1959), 66–74. MR 140556, DOI 10.2307/1970093
- David A. Buchsbaum, Satellites and universal functors, Ann. of Math. (2) 71 (1960), 199–209. MR 112905, DOI 10.2307/1970081
- Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239–281 (German). MR 97062, DOI 10.2307/1970005
- Z. Fiedorowicz, H. Hauschild, and J. P. May, Equivariant algebraic $K$-theory, Algebraic $K$-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 23–80. MR 689388
- Akio Hattori and Tomoyoshi Yoshida, Lifting compact group actions in fiber bundles, Japan. J. Math. (N.S.) 2 (1976), no. 1, 13–25. MR 461538, DOI 10.4099/math1924.2.13
- R. K. Lashof, J. P. May, and G. B. Segal, Equivariant bundles with abelian structural group, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 167–176. MR 711050, DOI 10.1090/conm/019/711050
- R. Lashof and M. Rothenberg, $G$-smoothing theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 211–266. MR 520506
- Saunders Mac Lane, Spectral complications in cohomology computations, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 11–23. MR 767094, DOI 10.1090/conm/033/767094
- Graeme Segal, Cohomology of topological groups, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) Academic Press, London, 1970, pp. 377–387. MR 0280572
- Tammo tom Dieck, Faserbündel mit Gruppenoperation, Arch. Math. (Basel) 20 (1969), 136–143 (German). MR 245027, DOI 10.1007/BF01899003
- David Wigner, Algebraic cohomology of topological groups, Trans. Amer. Math. Soc. 178 (1973), 83–93. MR 338132, DOI 10.1090/S0002-9947-1973-0338132-7
- Nobuo Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507–576 (1960). MR 225854
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 296 (1986), 181-190
- MSC: Primary 55N25; Secondary 55R10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837806-8
- MathSciNet review: 837806