## Equivariant bundles and cohomology

HTML articles powered by AMS MathViewer

- by A. Kozlowski PDF
- Trans. Amer. Math. Soc.
**296**(1986), 181-190 Request permission

## Abstract:

Let $G$ be a topological group, $A$ an abelian topological group on which $G$ acts continuously and $X$ a $G$-space. We define "equivariant cohomology groups" of $X$ with coefficients in $A$, $H_G^i(X;A)$, for $i \geq 0$ which generalize Graeme Segal’s continuous cohomology of the topological group $G$ with coefficients in $A$. In particular we have $H_G^1(X;A) \simeq$ equivalence classes of principal $(G,A)$-bundles over $X$. We show that when $G$ is a compact Lie group and $A$ an abelian Lie group we have for $i > 1\;H_G^i(X;A) \simeq {H^i}(EG{ \times _G}X;\tau A)$ where $\tau A$ is the sheaf of germs of sections of the bundle $(X \times EG \times A)/G \to (X \times EG)/G$. For $i = 1$ and the trivial action of $G$ on $A$ this is a theorem of Lashof, May and Segal.## References

- Glen E. Bredon,
*Sheaf theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. MR**0221500** - Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144** - Edward Bierstone,
*The equivariant covering homotopy property for differentiable $G$-fibre bundles*, J. Differential Geometry**8**(1973), 615–622. MR**341509** - David A. Buchsbaum,
*A note on homology in categories*, Ann. of Math. (2)**69**(1959), 66–74. MR**140556**, DOI 10.2307/1970093 - David A. Buchsbaum,
*Satellites and universal functors*, Ann. of Math. (2)**71**(1960), 199–209. MR**112905**, DOI 10.2307/1970081 - Albrecht Dold and René Thom,
*Quasifaserungen und unendliche symmetrische Produkte*, Ann. of Math. (2)**67**(1958), 239–281 (German). MR**97062**, DOI 10.2307/1970005 - Z. Fiedorowicz, H. Hauschild, and J. P. May,
*Equivariant algebraic $K$-theory*, Algebraic $K$-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 23–80. MR**689388** - Akio Hattori and Tomoyoshi Yoshida,
*Lifting compact group actions in fiber bundles*, Japan. J. Math. (N.S.)**2**(1976), no. 1, 13–25. MR**461538**, DOI 10.4099/math1924.2.13 - R. K. Lashof, J. P. May, and G. B. Segal,
*Equivariant bundles with abelian structural group*, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 167–176. MR**711050**, DOI 10.1090/conm/019/711050 - R. Lashof and M. Rothenberg,
*$G$-smoothing theory*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 211–266. MR**520506** - Saunders Mac Lane,
*Spectral complications in cohomology computations*, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 11–23. MR**767094**, DOI 10.1090/conm/033/767094 - Graeme Segal,
*Cohomology of topological groups*, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) Academic Press, London, 1970, pp. 377–387. MR**0280572** - Tammo tom Dieck,
*Faserbündel mit Gruppenoperation*, Arch. Math. (Basel)**20**(1969), 136–143 (German). MR**245027**, DOI 10.1007/BF01899003 - David Wigner,
*Algebraic cohomology of topological groups*, Trans. Amer. Math. Soc.**178**(1973), 83–93. MR**338132**, DOI 10.1090/S0002-9947-1973-0338132-7 - Nobuo Yoneda,
*On Ext and exact sequences*, J. Fac. Sci. Univ. Tokyo Sect. I**8**(1960), 507–576 (1960). MR**225854**

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**296**(1986), 181-190 - MSC: Primary 55N25; Secondary 55R10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837806-8
- MathSciNet review: 837806