A parametrix for step-two hypoelliptic diffusion equations
HTML articles powered by AMS MathViewer
- by Thomas Taylor
- Trans. Amer. Math. Soc. 296 (1986), 191-215
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837807-X
- PDF | Request permission
Abstract:
In this paper I construct a parametrix for the hypoelliptic diffusion equations $(\partial /\partial t - L)u = 0$, where $L = \sum \nolimits _{a = 1}^n {g_a^2}$ and where the ${g_a}$ are vector fields which satisfy the property that they, together with all of the commutators $[{g_{a,}}{g_b}]$ for $a < b$, are at each point linearly independent and span the tangent space.References
- M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279–330. MR 650828, DOI 10.1007/BF01425417
- Richard Beals, Peter C. Greiner, and Nancy K. Stanton, The heat equation and geometry of CR manifolds, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 275–276. MR 733694, DOI 10.1090/S0273-0979-1984-15242-X
- R. W. Brockett, Control theory and singular Riemannian geometry, New directions in applied mathematics (Cleveland, Ohio, 1980) Springer, New York-Berlin, 1982, pp. 11–27. MR 661282 R. Feynman, Statistical mechanics, Benjamin, Reading, Mass., 1972.
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- Bernard Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), no. 1-2, 95–153. MR 461589, DOI 10.1007/BF02392235 P. Gilkey, Curvature and eigenvalues of the Laplacian for elliptic complexes, Adv. in Math. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York, 1980.
- K. Helmes and A. Schwane, Lévy’s stochastic area formula in higher dimensions, Advances in filtering and optimal stochastic control (Cocoyoc, 1982) Lect. Notes Control Inf. Sci., vol. 42, Springer, Berlin, 1982, pp. 161–169. MR 794513, DOI 10.1007/BFb0004535
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081 P. E. Jorgensen, Representation of differential operators on a Lie group, J. Funct. Anal. 20 (1975), 105.
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1 (1967), no. 1, 43–69. MR 217739
- S. Minakshisundaram, A generalization of Epstein zeta functions. With a supplementary note by Hermann Weyl, Canad. J. Math. 1 (1949), 320–327. MR 32861, DOI 10.4153/cjm-1949-029-3
- S. Minakshisundaram, Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc. (N.S.) 17 (1953), 159–165 (1954). MR 61750
- S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256. MR 31145, DOI 10.4153/cjm-1949-021-5
- V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geometry 5 (1971), 233–249. MR 292114
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- Nancy K. Stanton and David S. Tartakoff, The heat equation for the $\bar \partial _{b}$-Laplacian, Comm. Partial Differential Equations 9 (1984), no. 7, 597–686. MR 745020, DOI 10.1080/03605308408820343
- Michael E. Taylor, Noncommutative microlocal analysis. I, Mem. Amer. Math. Soc. 52 (1984), no. 313, iv+182. MR 764508, DOI 10.1090/memo/0313 T. J. Taylor, Hypoelliptic diffusions and nonlinear control theory, Harvard Ph.D. Thesis, 1983.
- Kôsaku Yosida, Functional analysis, 4th ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, New York-Heidelberg, 1974. MR 0350358
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 296 (1986), 191-215
- MSC: Primary 35H05; Secondary 35K55
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837807-X
- MathSciNet review: 837807