## A parametrix for step-two hypoelliptic diffusion equations

HTML articles powered by AMS MathViewer

- by Thomas Taylor PDF
- Trans. Amer. Math. Soc.
**296**(1986), 191-215 Request permission

## Abstract:

In this paper I construct a parametrix for the hypoelliptic diffusion equations $(\partial /\partial t - L)u = 0$, where $L = \sum \nolimits _{a = 1}^n {g_a^2}$ and where the ${g_a}$ are vector fields which satisfy the property that they, together with all of the commutators $[{g_{a,}}{g_b}]$ for $a < b$, are at each point linearly independent and span the tangent space.## References

- M. Atiyah, R. Bott, and V. K. Patodi,
*On the heat equation and the index theorem*, Invent. Math.**19**(1973), 279–330. MR**650828**, DOI 10.1007/BF01425417 - Richard Beals, Peter C. Greiner, and Nancy K. Stanton,
*The heat equation and geometry of CR manifolds*, Bull. Amer. Math. Soc. (N.S.)**10**(1984), no. 2, 275–276. MR**733694**, DOI 10.1090/S0273-0979-1984-15242-X - R. W. Brockett,
*Control theory and singular Riemannian geometry*, New directions in applied mathematics (Cleveland, Ohio, 1980) Springer, New York-Berlin, 1982, pp. 11–27. MR**661282**
R. Feynman, - G. B. Folland and Elias M. Stein,
*Hardy spaces on homogeneous groups*, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR**657581** - Bernard Gaveau,
*Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents*, Acta Math.**139**(1977), no. 1-2, 95–153. MR**461589**, DOI 10.1007/BF02392235
P. Gilkey, - K. Helmes and A. Schwane,
*Lévy’s stochastic area formula in higher dimensions*, Advances in filtering and optimal stochastic control (Cocoyoc, 1982) Lect. Notes Control Inf. Sci., vol. 42, Springer, Berlin, 1982, pp. 161–169. MR**794513**, DOI 10.1007/BFb0004535 - Lars Hörmander,
*Hypoelliptic second order differential equations*, Acta Math.**119**(1967), 147–171. MR**222474**, DOI 10.1007/BF02392081
P. E. Jorgensen, - Tosio Kato,
*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473** - H. P. McKean Jr. and I. M. Singer,
*Curvature and the eigenvalues of the Laplacian*, J. Differential Geometry**1**(1967), no. 1, 43–69. MR**217739** - S. Minakshisundaram,
*A generalization of Epstein zeta functions. With a supplementary note by Hermann Weyl*, Canad. J. Math.**1**(1949), 320–327. MR**32861**, DOI 10.4153/cjm-1949-029-3 - S. Minakshisundaram,
*Eigenfunctions on Riemannian manifolds*, J. Indian Math. Soc. (N.S.)**17**(1953), 159–165 (1954). MR**61750** - S. Minakshisundaram and Å. Pleijel,
*Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds*, Canad. J. Math.**1**(1949), 242–256. MR**31145**, DOI 10.4153/cjm-1949-021-5 - V. K. Patodi,
*Curvature and the eigenforms of the Laplace operator*, J. Differential Geometry**5**(1971), 233–249. MR**292114** - Linda Preiss Rothschild and E. M. Stein,
*Hypoelliptic differential operators and nilpotent groups*, Acta Math.**137**(1976), no. 3-4, 247–320. MR**436223**, DOI 10.1007/BF02392419 - Nancy K. Stanton and David S. Tartakoff,
*The heat equation for the $\bar \partial _{b}$-Laplacian*, Comm. Partial Differential Equations**9**(1984), no. 7, 597–686. MR**745020**, DOI 10.1080/03605308408820343 - Michael E. Taylor,
*Noncommutative microlocal analysis. I*, Mem. Amer. Math. Soc.**52**(1984), no. 313, iv+182. MR**764508**, DOI 10.1090/memo/0313
T. J. Taylor, - Kôsaku Yosida,
*Functional analysis*, 4th ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, New York-Heidelberg, 1974. MR**0350358**

*Statistical mechanics*, Benjamin, Reading, Mass., 1972.

*Curvature and eigenvalues of the Laplacian for elliptic complexes*, Adv. in Math. I. S. Gradshteyn and I. M. Ryzhik,

*Table of integrals, series, and products*, Academic Press, New York, 1980.

*Representation of differential operators on a Lie group*, J. Funct. Anal.

**20**(1975), 105.

*Hypoelliptic diffusions and nonlinear control theory*, Harvard Ph.D. Thesis, 1983.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**296**(1986), 191-215 - MSC: Primary 35H05; Secondary 35K55
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837807-X
- MathSciNet review: 837807