On integers free of large prime factors
HTML articles powered by AMS MathViewer
- by Adolf Hildebrand and Gérald Tenenbaum
- Trans. Amer. Math. Soc. 296 (1986), 265-290
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837811-1
- PDF | Request permission
Abstract:
The number $\Psi (x,y)$ of integers $\leq x$ and free of prime factors $> y$ has been given satisfactory estimates in the regions $y \leq {(\log x)^{3/4 - \varepsilon }}$ and $y > \exp \{ {(\log \log x)^{5/3 + \varepsilon }}\}$. In the intermediate range, only very crude estimates have been obtained so far. We close this "gap" and give an expression which approximates $\Psi (x,y)$ uniformly for $x \geq y \geq 2$ within a factor $1 + O((\log y)/(\log x) + (\log y)/y)$. As an application, we derive a simple formula for $\Psi (cx,y)/\Psi (x,y)$, where $1 \leq c \leq y$. We also prove a short interval estimate for $\Psi (x,y)$.References
- Krishnaswami Alladi, The Turán-Kubilius inequality for integers without large prime factors, J. Reine Angew. Math. 335 (1982), 180–196. MR 667466, DOI 10.1515/crll.1982.335.180
- N. G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25–32. MR 43838
- N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50–60. MR 0046375
- N. G. de Bruijn, On the number of positive integers $\leq x$ and free prime factors $>y$. II, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math. 28 (1966), 239–247. MR 0205945
- E. Rodney Canfield, The asymptotic behavior of the Dickman-de Bruijn function, Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982), 1982, pp. 139–148. MR 725875
- E. R. Canfield, Paul Erdős, and Carl Pomerance, On a problem of Oppenheim concerning “factorisatio numerorum”, J. Number Theory 17 (1983), no. 1, 1–28. MR 712964, DOI 10.1016/0022-314X(83)90002-1 K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys. 22 (1930), 1-14.
- William John Ellison, Les nombres premiers, Publications de l’Institut de Mathématique de l’Université de Nancago, No. IX, Hermann, Paris, 1975 (French). En collaboration avec Michel Mendès France. MR 0417077
- Veikko Ennola, On numbers with small prime divisors, Ann. Acad. Sci. Fenn. Ser. A I 440 (1969), 16. MR 0244175
- Douglas Hensley, The number of positive integers $\leq x$ and free of prime factors $>y$, J. Number Theory 21 (1985), no. 3, 286–298. MR 814007, DOI 10.1016/0022-314X(85)90057-5
- Douglas Hensley, A property of the counting function of integers with no large prime factors, J. Number Theory 22 (1986), no. 1, 46–74. MR 821136, DOI 10.1016/0022-314X(86)90030-2
- Adolf Hildebrand, On the number of positive integers $\leq x$ and free of prime factors $>y$, J. Number Theory 22 (1986), no. 3, 289–307. MR 831874, DOI 10.1016/0022-314X(86)90013-2 —, On the local behavior of $\Psi (x,y)$, Trans. Amer. Math. Soc. (to appear). H. Maier, On integers free of large prime divisors, Preprint.
- Karl K. Norton, Numbers with small prime factors, and the least $k$th power non-residue, Memoirs of the American Mathematical Society, No. 106, American Mathematical Society, Providence, R.I., 1971. MR 0286739
- Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0087685 R. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247.
- A. I. Vinogradov, On numbers with small prime divisors, Dokl. Akad. Nauk SSSR (N.S.) 109 (1956), 683–686 (Russian). MR 0085284
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 296 (1986), 265-290
- MSC: Primary 11N25
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837811-1
- MathSciNet review: 837811