## On a conormal module of smooth set theoretic complete intersections

HTML articles powered by AMS MathViewer

- by M. Boratyński PDF
- Trans. Amer. Math. Soc.
**296**(1986), 291-300 Request permission

## Abstract:

We prove that $V \subset {\mathbf {A}}_k^n$ ($V$-smooth) is a set-theoretic complete intersection (stci) if and only if $V$ imbedded as a zero section of its normal bundle is a stci, we give a characterization of smooth codimension $2$ stci of index $\leq 4$ in terms of their conormal modules.## References

- Hyman Bass,
*Projective modules and symmetric algebras*, Monografías de Matemática [Mathematical Monographs], vol. 30, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1978. MR**527279** - M. Boratyński,
*A note on set-theoretic complete intersection ideals*, J. Algebra**54**(1978), no. 1, 1–5. MR**511453**, DOI 10.1016/0021-8693(78)90017-0 - Maksymillian Boratyński,
*Poincaré forms, Gorenstein algebras and set theoretic complete intersections*, Complete intersections (Acireale, 1983) Lecture Notes in Math., vol. 1092, Springer, Berlin, 1984, pp. 270–290. MR**775889**, DOI 10.1007/BFb0099369 - David Eisenbud and E. Graham Evans Jr.,
*Generating modules efficiently: theorems from algebraic $K$-theory*, J. Algebra**27**(1973), 278–305. MR**327742**, DOI 10.1016/0021-8693(73)90106-3 - Manfred Knebusch,
*Symmetric bilinear forms over algebraic varieties*, Conference on Quadratic Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976) Queen’s Papers in Pure and Appl. Math., No. 46, Queen’s Univ., Kingston, Ont., 1977, pp. 103–283. MR**0498378** - Hartmut Lindel,
*On projective modules over polynomial rings over regular rings*, Algebraic $K$-theory, Part I (Oberwolfach, 1980) Lecture Notes in Math., vol. 966, Springer, Berlin-New York, 1982, pp. 169–179. MR**689374** - Günter Scheja and Uwe Storch,
*Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte*, Manuscripta Math.**19**(1976), no. 1, 75–104. MR**407039**, DOI 10.1007/BF01172339

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**296**(1986), 291-300 - MSC: Primary 14M10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837812-3
- MathSciNet review: 837812