Chebyshev rank in $L_ 1$-approximation
HTML articles powered by AMS MathViewer
- by András Kroó
- Trans. Amer. Math. Soc. 296 (1986), 301-313
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837813-5
- PDF | Request permission
Abstract:
Let ${C_\omega }(K)$ denote the space of continuous functions endowed with the norm ${\smallint _K}\omega \left | f \right | = {\left \| f \right \|_\omega },\omega > 0$. In this paper we characterize the subspaces ${U_n} \subset {C_\omega }(K)$ having Chebyshev rank at most $k\;(0 \leq k \leq n - 1)$ with respect to all bounded positive weights $\omega$. Various applications of main results are also presented.References
- E. W. Cheney and D. E. Wulbert, The existence and unicity of best approximations, Math. Scand. 24 (1969), 113–140. MR 261241, DOI 10.7146/math.scand.a-10925
- A. L. Garkavi, Dimensionality of polyhedra of best approximation for differentiable functions, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 93–114 (Russian). MR 0104957
- Alfred Haar, Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Math. Ann. 78 (1917), no. 1, 294–311 (German). MR 1511900, DOI 10.1007/BF01457106
- S. Ja. Havinson, On uniqueness of functions of best approximation in the metric of the space $L_{1}$, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 243–270 (Russian). MR 0101443 —, On dimensionality of polyhedra of best approximation in the metric ${L_1}$, Sbornik Trudov MISI 1 (1957), 18-29. (Russian)
- Charles R. Hobby and John R. Rice, A moment problem in $L_{1}$ approximation, Proc. Amer. Math. Soc. 16 (1965), 665–670. MR 178292, DOI 10.1090/S0002-9939-1965-0178292-5
- Dunham Jackson, Note on a class of polynomials of approximation, Trans. Amer. Math. Soc. 22 (1921), no. 3, 320–326. MR 1501177, DOI 10.1090/S0002-9947-1921-1501177-1
- R. C. Jones and L. A. Karlovitz, Equioscillation under nonuniqueness in the approximation of continuous functions, J. Approximation Theory 3 (1970), 138–145. MR 264303, DOI 10.1016/0021-9045(70)90021-3 M. G. Krein, The $L$-problem in abstract linear normed spaces, in Some Questions in the Theory of Moments (N. Achiezer and M. G. Krein, eds.), Transl. Math. Monos., Vol. 2, Amer. Math. Soc., Providence, R.I., 1962. M. G. Krein and A. A. Nudelman, Markov moments and extremal problems, Nauka, Moscow, 1973. (Russian)
- András Kroó, On the unicity of best Chebyshev approximation of differentiable functions, Acta Sci. Math. (Szeged) 47 (1984), no. 3-4, 377–389. MR 783312
- András Kroó, On an $L_1$-approximation problem, Proc. Amer. Math. Soc. 94 (1985), no. 3, 406–410. MR 787882, DOI 10.1090/S0002-9939-1985-0787882-0
- András Kroó, A general approach to the study of Chebyshev subspaces in $L_1$-approximation of continuous functions, J. Approx. Theory 51 (1987), no. 2, 98–111. MR 909801, DOI 10.1016/0021-9045(87)90024-4
- A. Pinkus, Unicity subspaces in $L^1$-approximation, J. Approx. Theory 48 (1986), no. 2, 226–250. MR 862238, DOI 10.1016/0021-9045(86)90007-9 A. Pinkus and V. Totik, One-sided ${L^1}$-approximation, preprint.
- G. Š. Rubinšteĭn, On a method of investigation of convex sets, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 451–454 (Russian). MR 0071793
- Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR 0270044, DOI 10.1007/978-3-662-41583-2 M. Sommer, Examples of unicity subspaces in ${L_1}$-approximation, preprint.
- H. Strauss, $I_{1}$-Approximation mit Splinefunktionen, Numerische Methoden der Approximationstheorie, Band 2 (Tagung, Math. Forschungsinst., Oberwolfach, 1973) Internat. Schriftenreihe Numer. Math., Band 26, Birkhäuser, Basel, 1975, pp. 151–162 (German). MR 0382951 —, Eindeutigkeit in der ${L_1}$-Approximation, Math. Z. 176 (1981), 63-74.
- J. Mandler, Sur les systèmes de Tchebycheff, J. Approximation Theory 14 (1975), 38–42 (French). MR 393968, DOI 10.1016/0021-9045(75)90066-0
- Eli Passow, Alternating parity of Tchebycheff systems, J. Approximation Theory 9 (1973), 295–298. MR 355433, DOI 10.1016/0021-9045(73)90096-8
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 296 (1986), 301-313
- MSC: Primary 41A52; Secondary 41A65
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837813-5
- MathSciNet review: 837813