Inequalities for some maximal functions. II

Authors:
M. Cowling and G. Mauceri

Journal:
Trans. Amer. Math. Soc. **296** (1986), 341-365

MSC:
Primary 42B25; Secondary 42B10

DOI:
https://doi.org/10.1090/S0002-9947-1986-0837816-0

MathSciNet review:
837816

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $S$ be a smooth compact hypersurface in ${{\mathbf {R}}^n}$, and let $\mu$ be a measure on $S$, absolutely continuous with respect to surface measure. For $t$ in ${{\mathbf {R}}^ + },{\mu _t}$ denotes the dilate of $\mu$ by $t$, normalised to have the same total variation as $\mu$: for $f$ in $\mathcal {S}({{\mathbf {R}}^n}),{\mu ^\# }f$ denotes the maximal function ${\sup _{t > 0}}|{\mu _t}\ast f|$. We seek conditions on $\mu$ which guarantee that the *a priori* estimate \[ \left \| \mu ^\# f\right \|_p \leq C\left \| f \right \|_p, \quad f \in S(\mathbf {R}^n),\] holds; this estimate entails that the sublinear operator ${\mu ^\# }$ extends to a bounded operator on the Lebesgue space ${L^p}({{\mathbf {R}}^n})$. Our methods generalise E. M. Steinβs treatment of the "spherical maximal function" [**5**]: a study of "Riesz operators", $g$-functions, and analytic families of measures reduces the problem to that of obtaining decay estimates for the Fourier transform of $\mu$. These depend on the geometry of $S$ and the relation between $\mu$ and surface measure on $S$. In particular, we find that there are natural geometric maximal operators limited on ${L^p}({{\mathbf {R}}^n})$ if and only if $p \in (q,\infty ];q$ is some number in $(1,\infty )$, and may be greater than $2$. This answers a question of S. Wainger posed by Stein [**6**]>.

- Michael G. Cowling,
*On Littlewood-Paley-Stein theory*, Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), 1981, pp. 21β55. MR**639463** - Michael Cowling and Giancarlo Mauceri,
*Inequalities for some maximal functions. I*, Trans. Amer. Math. Soc.**287**(1985), no. 2, 431β455. MR**768718**, DOI https://doi.org/10.1090/S0002-9947-1985-0768718-5 - Allan Greenleaf,
*Principal curvature and harmonic analysis*, Indiana Univ. Math. J.**30**(1981), no. 4, 519β537. MR**620265**, DOI https://doi.org/10.1512/iumj.1981.30.30043 - Christopher D. Sogge and Elias M. Stein,
*Averages of functions over hypersurfaces in ${\bf R}^n$*, Invent. Math.**82**(1985), no. 3, 543β556. MR**811550**, DOI https://doi.org/10.1007/BF01388869 - Elias M. Stein,
*Maximal functions. I. Spherical means*, Proc. Nat. Acad. Sci. U.S.A.**73**(1976), no. 7, 2174β2175. MR**420116**, DOI https://doi.org/10.1073/pnas.73.7.2174 - E. M. Stein,
*Some problems in harmonic analysis*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3β20. MR**545235** - Elias M. Stein and Stephen Wainger,
*Problems in harmonic analysis related to curvature*, Bull. Amer. Math. Soc.**84**(1978), no. 6, 1239β1295. MR**508453**, DOI https://doi.org/10.1090/S0002-9904-1978-14554-6 - Elias M. Stein and Guido Weiss,
*Introduction to Fourier analysis on Euclidean spaces*, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR**0304972**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42B25,
42B10

Retrieve articles in all journals with MSC: 42B25, 42B10

Additional Information

Keywords:
Maximal function,
hypersurface,
Fourier transform

Article copyright:
© Copyright 1986
American Mathematical Society