A critical set with nonnull image has large Hausdorff dimension
HTML articles powered by AMS MathViewer
- by Alec Norton
- Trans. Amer. Math. Soc. 296 (1986), 367-376
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837817-2
- PDF | Request permission
Abstract:
The question of how complicated a critical set must be to have a nonnull image is answered by relating its Hausdorff dimension to the (Hölder) differentiability of the map. This leads to a new extension of the Morse-Sard Theorem. The main tool is an extended version of Morse’s Lemma.References
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Herbert Federer, Some integralgeometric theorems, Trans. Amer. Math. Soc. 77 (1954), 238–261. MR 63686, DOI 10.1090/S0002-9947-1954-0063686-6 —, Geometric measure theory, Grundlehren der Math. Wiss., vol. 153, Springer-Verlag, 1969.
- Jenny Harrison, Continued fractals and the Seifert conjecture, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 147–153. MR 799799, DOI 10.1090/S0273-0979-1985-15400-X
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493 S. Lang, Analysis II, Addison-Wesley, Reading, Mass., 1969.
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
- Anthony P. Morse, The behavior of a function on its critical set, Ann. of Math. (2) 40 (1939), no. 1, 62–70. MR 1503449, DOI 10.2307/1968544 A. Norton, Ph.D. Thesis, Univ. of California, Berkeley, 1986.
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Arthur Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883–890. MR 7523, DOI 10.1090/S0002-9904-1942-07811-6
- Arthur Sard, The equivalence of $n$-measure and Lebesgue measure in $E_n$, Bull. Amer. Math. Soc. 49 (1943), 758–759. MR 8837, DOI 10.1090/S0002-9904-1943-08025-1
- Arthur Sard, Images of critical sets, Ann. of Math. (2) 68 (1958), 247–259. MR 100063, DOI 10.2307/1970246
- Arthur Sard, Hausdorff measure of critical images on Banach manifolds, Amer. J. Math. 87 (1965), 158–174. MR 173748, DOI 10.2307/2373229
- Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578
- Hassler Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), no. 4, 514–517. MR 1545896, DOI 10.1215/S0012-7094-35-00138-7
- Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings, Math. Ann. 264 (1983), no. 4, 495–515. MR 716263, DOI 10.1007/BF01456957
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 296 (1986), 367-376
- MSC: Primary 26B35; Secondary 28A25, 58C25, 58E05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837817-2
- MathSciNet review: 837817