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ON STARSHAPED REARRANGEMENT AND APPLICATIONS1

BERNHARD KAWOHL

ABSTRACT. A radial symmetrization technique is investigated and new prop-

erties are proven. The method transforms functions u into new functions u*

with starshaped level sets and is therefore called starshaped rearrangement.

This rearrangement is in general not equimeasurable, a circumstance with some

surprising consequences. The method is then applied to certain variational and

free boundary problems and yields new results on the geometrical properties

of solutions to these problems. In particular, the Lipschitz continuity of free

boundaries can now be easily obtained in a new fashion.

Introduction. In [26] G. Szegö introduced the concept of radial symmetrization.

This is a nonequimeasurable rearrangement which transforms functions ?i:fi-»R,

fi C R2 with starshaped level sets fic := {x G fi|u(x) > c} into functions u* with

symmetric starshaped level sets. Later [2, 3, 15, 16, 22] his approach was gener-

alized to transform functions with level sets containing the origin into starshaped

and not necessarily symmetric level sets and to higher dimensions. We call a set

D C R" starshaped with respect to xo if x G D implies tx + (1 — i)xn G D for every

t G [0,1]. We call a set D starshaped if it is starshaped with respect to the origin.

Therefore a more appropriate name for this rearrangement might be "starshaped

rearrangement," in particular, since the notion of radial symmetrization can be

easily confused with circular or spherical symmetrization or spherically symmetric

rearrangement.

One of the standard results in the theory of rearrangements is that the capacity

of a condenser decreases under rearrangement; i.e.,

[ ]Vu(x)\pdx>  i   |Vu*(x)|pdx     forp>l,
Jn Jq'

where u = 1 on fii, u = 0 on dfi and UE(0) C Qx C fi, e > 0, 0 < u < 1 in ÍX

This feature can be found for starshaped rearrangement, too [2, 3, 15, 16,

22] but only at the sacrifice of defining different rearrangements u*(p) for different

values of p. Corollary 1.4 states

(0.1) f |Vu(x)|p> f |Vu*(p)(x)|pdx     forp> 1,
Jn Jn

provided fi C Rn is a bounded starshaped domain containing U£(0) and u:fi —►

[0,1], u G G0,1 (H), it = 1 in Us(0) and tí = 0 on dfi.
Another convenient feature of other rearrangements is their equimeasurability.

A rearrangement u —y u* is called equimeasurable if the n-dimensional Lebesgue
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378 BERNHARD KAWOHL

measure mn(fic) coincides with mn(fi*) for all c G range«, where fi* is the corre-

sponding level set of u*. Among other things, equimeasurability implies Cavalieri's

principle

(0.2) [ F(u(x))dx= f   F(u*(x))dx
Jn Jn-

for every Borel measurable function F.

Unfortunately u and u*^ (for p > 1) are not equimeasurable, although u and

tt*(°) are. Since property (0.2) appears to be desirable for potential applications,

one might ask if, in addition to (0.1), the inequality

(0.3) / |Vu(x)|pdx> f \Vu*(-°Hx)\pdx
Jn Jn

holds under the same conditions as (0.1).

As a first result we give a counterexample to (0.3). The proof is based on

a surprising feature of this kind of rearrangement. Unlike Schwarz and Steiner

symmetrization [23], the "surface" or perimeter of a level set can increase under

rearrangement.

As a second result we discuss the strict inequality in (0.1). If u is smooth in a

sense defined below, the equality sign in (0.1) implies u = u*(p'. This is relevant

because it has applications to variational problems with multiple solutions.

A third result is the fact that for nonequimeasurable rearrangements, equality

(0.2) can be replaced by an inequality.

Therefore starshaped rearrangement can be applied to variational functionals of

type

(0.4) J(v)= f {\Vv(x)[p + F(v)}dx
Jn

or of type

(0.5) J(v)= f {[Vv(x)[2 + X{v>o}}dx.
Jn

Our results provide new statements about the geometry of level sets of solutions,

e.g., Lipschitz continuity of the free boundary in a "jet problem" in Rn [1]. They

also give new proofs of some already known results.

Other ways to prove starshapedness of level sets of a function u are usually based

on maximum principles and require fairly strong regularity properties of u, which

are unrealistic for our applications. We refer to [11-13, 19, 24] for those and

similar questions.

Throughout the paper we use the common notation W1,P(Q), W0 ,p(fi) and Lp(fi)

for Sobolev spaces of functions [9, 18]. C(D) denotes functions that are continuous

in D. If D is closed, they are continuous on D. Ck'a(D) are functions with

derivatives up to order k and with a-Holder continuous fcth derivative, 0 < a < 1.

A boundary dfi of a domain fi in R" is said to be of class Ck'a if it can be

described locally by a Ck'a function of n-1 variables. G0,1 boundaries ¿>fi are called

Lipschitz continuous. As usual R+ denotes (0, oo), Rq = [0, oo), N = {1,2,3,...},

N0 = {0,1,2,3,...} and e and 6 are sufficiently small positive real numbers. Unless

otherwise indicated, all occurring integrals are understood to be Lebesgue integrals.

This paper is a revised and abbreviated version of [14].
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I. Starshaped rearrangement. A common principle of symmetrization or

rearrangement techniques is to replace a level set fic := {x G fi|u(x) > c} by

another one fi* which has the desired properties of symmetry or, in our case,

starshapedness. The function u* can then be constructed from its level sets fi* just

like a three-dimensional mountain can be constructed from a map that shows all of

its level lines.

For our purposes we shall define the rearrangement u*^p^ of a function u under

the following general assumptions.

(1.1) fic Rn is a bounded starshaped domain containing Ue(0).

(1.2) u := ÎÎ -> [0,1], u G C0'x(ñ), u = 1 in U£(0) and u = 0 on dfi.

Therefore each nonempty level set of it will contain Í7£(0). Let D c R" be

compact and Us(0) C D. To define Dt(-P\ we shall use n-dimensional polar coordi-

nates (r, öi,..., 9n-X) of a point x — (xx,..., xn) G Rn, which are defined by the

relations

l   l a\x\ = r,    xx = reosöi,...,

(1.3) Xfc = rsinöi sin^2 • •-sinöfc-i cosÖfc    for k = 2,... ,n — 1,

xn - rsin0!sin02 •• -sin0n_i,

where 0 < 9k < tt for k = 1,... , n — 2 and —7r < ö„_i < w. For typographical

reasons let 9 denote the vector of the angular coordinates (9X,... ,9n-X) and T

the (n — l)-dimensional hypercube [0,7r]™~2 x [—it, tt]. A point x G Rn has the

representation x = (r, 9), where 9 G T and r G Rq • The ray {x G R"|x =

(r, 9), 9 = 9', r>£} will be denoted by L(9') and D(9') = D n L(9').
Let g: R+ -»Rbea positive and continuous function and let G be its primitive.

We define

(1.4) h(9):= f      g(r)dr + G(e),
Jd{6)

(1.5) R(9):=G~x(h(9)),

where the integral in (1.4) is understood to be a Lebesgue integral. Notice that

R(9) does not depend on e. For compact sets D containing Ue(0) we define

D* := {x G Rn|0 < |x| < R(9), 9 G T}.

If D is empty, then by definition D* is empty.

This construction transforms given sets D into starshaped ones, since the sets

D* are starshaped with respect to zero. In particular, let us from now on consider

a special class of rearrangements, namely those induced by the family of metrics

(1.6) g(r)=rß-x     with/3eR.
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380 BERNHARD KAWOHL

In addition to the assumption U£(0) C D and D compact, let us now assume that

the rays 9 = constant intersect 3D in a finite (odd) number 2m + 1 of points

0 < £ < rx(9) < r2(9) <      < r2m+x(9)   with m G N0.

Then for ß ¿ 0

(17) h(9) = ±(rß-rß + ... + rt+1),

R(9) = irß-rß + --- + rßm+xyß,

while for ß = 0

h(9) = logn - logr2 + • • • + logr2m+i,

(1-8) Ä,0x = rir3r5"T2m+i

r2r4 • ■ • r2r

The rearrangement of D under the metric g(r) = rn p  * will be denoted by _D*'p)

from now on, where pGR, nGlS. A simple calculation shows

(1.9) /  dx= /        dx

for compact sets D containing U£(0). Now we are in a position to define the

(decreasing) starshaped rearrangement u*^ of a function u satisfying (1.1), (1.2)

as follows:

(1.10) u*(p)(x):=sup{ce[0,l]|xefi*(p>}     forxGfi*(=fi).

Then it is well known [2, 3, 15, 16, 22] that for every p > 1

(1.11) fi*(p) = {xGfi|u*(p)(x) >c}    for each ce [0,1],

so that the level sets of u*^ are starshaped and

(1.12) u*(phs uniformly Lipschitz continuous on fi.

A new result is the following.

THEOREM 1.1. There exist a domain fi C R2 and a function v G Wo'1 (fi)

satisfying (1.1), (1,2), for which (0,1) fails; i.e.,

(1.13) / \Vv*w(x)\dx > / |Vu(x)|dx
Jn Jn

holds.

The proof is based on H. Grabmiiller's "long nose" (Lemma 1.2) and on Federer's

coarea formula.

LEMMA 1.2. There exists a compact domain D C U£(0) in R2 such that the

perimeter of D is shorter than the perimeter of D*(°\

To prove Lemma 1.2 we simplify a construction in [10]. Let D be the union of

an e-neighborhood of zero with 0 < £ « 1 and of the angular sector {x = (r, 9) G

R2|l < r < 2, |0| < <p} where <p G (0, ir) is determined below. The perimeter of D
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STARSHAPED REARRANGEMENT AND APPLICATIONS 381

has length [3D] = 2 + 3<p + 2ir£; £>*(°) = {x = (r,9) G R2|0 < r < y/3 + 0(e), [9] <

<p} U U£(0) and the perimeter of D*^ has length |ÔD*(°>| = 2v/3 + \/3> + 0(e).

Apparently |9D*^| > \dD\ for sufficiently small £>, which proves the lemma.

To prove Theorem 1.1 let fi C R2 be a ball with radius 3 and center in the origin

and let D be the set constructed in the proof of Lemma 1.2. D will be the support

of a function v: fi —> [0,1] defined by

Í 0 if x € fi\L>,
(1.14) v(x) := ^ 2/e • d(x,3D)    iixGD and d(x,3D) < e/2,

(1 if x e D and d(x, 3D) > e/2.

If £ and p are sufficiently small, we have the strict inequality |dfic| < |dfi* I for

every c € (0,1), according to Lemma 1.2. But Federer's coarea formula states [5]

/  |V?j(x)|dx= /  P(t)dt,
Jn Jr

where P(t) = perimeter of {x G U]w(x) > i}. This implies (1.13).

To formulate the next theorem, we introduce some definitions. We call a function

u: fi —y [0,1] simple if u satisfies (1.1), (1.2) and if u is piecewise linear in fi. We call

a function u: fi —► [0,1] smooth if u satisfies (1.1), (1.2) and if u has the properties

(i) For almost every 9 G T and every c G (0,1) the set of points {(r, 9) G

fi|u(r, 9) = c} is finite.

(ii) For almost every 9 G T the set of points {(r, 9) G ü[(3u/3r)(r,9) = 0 and

u(r,9) G (0,1)} is finite.

THEOREM 1.3. Letu be simple or smooth andp > 1 and let H(9,t):Tx[0,1] —>

R+ be continuous.  Then the inequality

(1.15) / tf(0,u*(p))|Vu*(p)(x)|pdx < f H(9,u)]Vu(x)]pdx
Jn Jn

holds, and for p > 1 equality holds only if u = u*(p>.

Inequality (1.15) was derived in [2, 3] under the additional assumption H = 1. A

careful inspection of their proof reveals the extension given here and, in particular,

the strictness of this inequality. The reader who wants to check this should observe

that in the notation of [3], one has to set p(p) = p + £n~p for n ^ a and p(p) = 1

for n = a.

COROLLARY 1.4.   Let u satisfy (1.1), (1.2). Then the following holds for p > 1 :

(1.16) I |Vu*(p)(i)|pdx < / |Vu(x)|pdx.
Jn Jn

This follows with more or less standard approximation arguments and using

a trick from [6]. One approximates u by simple functions un and shows that

{■u„ }n£N has a subsequence converging to u*'p' in W0'p(fi). At the suggestion

of the referee the details are left to the reader.

Next we intend to find a substitute for (0.2). To this end we want to relate u*^

to u*(p) for p > 1 or fic*(0) to fi;(p).
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LEMMA  1.5.   Leí m G No and 0<£<rx<r2<-< r2m+i, rj G R, let

2 < n G N and 1 < p < oo, p ^ n.  Then the following inequalities hold:

(1.17)        (rnx-p - rn2-p + ■■■ + ^+i)1/(n-p) < (r? - rj + ■ • • + r^)1'",

(118) ri-r3--T2   +1^K_r, + -    + 1/n

r2 ■ r4 • • • r2m

If we introduce the notation j/j = r", a = (n-p)/n, inequality (1.17) is equivalent

to

(1.19) F(yx,..., y2m+1) := (yf -ya + ■ ■ . + r^m+l)U«-yi+y2-y2m+x < 0.

For n > p or a > 0 inequality (1.19) is recorded in [20], and the proof is reduced

to Weinberger's inequality [17, p. 112]. For p > n or a < 0 one can either modify

the proof of Payne and Weinstein in an obvious fashion or apply Theorem 5 on

p. 112 in [17].

Finally l'Hospital's rule implies that (1.18) follows from (1.17). This was kindly
pointed out by the referee. Another proof of (1.18) would follow along the lines of

[20].

THEOREM 1.6. Let u satisfy (1.1), (1.2), and p > 1. Then the following in-
equalities hold:

(1.20) u*i0)(x)>u*M(x)    inQ,

and

(1.21) / F(u(x))dx> f F(w*(p)(x))dx
Jn Jn

for F: [0,1] —► R monotone nondecreasing and Borel measurable.

It suffices to prove this theorem for simple functions; the rest follows from an

approximation argument. The level sets of simple functions are polyhedral, so for

almost every 9 G T the boundary of a level set is intersected only finitely often, an

odd number of times. Now we recall (1.7), (1.8) and Lemma 1.5 to see that

(1.22) fi*(0)Dfi*(p)    modulo a nullset,

so that (1.20) holds a.e. in fi, and by continuity of u*(°) and u*<p) (1.20) holds

everywhere in fi. Now (1.21) follows from (1.20), (1.9) and (0.2), since

/ F(u(x))dx = f F(u^0)(x))dx > f F(u*ip)(x))dx.
Jn Jn Jn

To conclude our results on starshaped rearrangement, we give a counterexample to

another type of inequality,

(1.23) / u(x)v(x)dx< / u*(x)v*(x)dx
Jn Jn

which does hold for Schwarz, Steiner or any other equimeasurable rearrangement.
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COROLLARY 1.7. There exist a domain fi C R2 and functions u and v sat-

isfying (1.1), (1.2) such that for p > 1 inequality (1.23) fails. Moreover, for these

functions even the following inequality holds:

(1.24) f u*M(x)v(x)dx>  f u*{p\x)v*{p)(x)dx.
Jn Jn

To prove this corollary we extend the definition of starshaped rearrangement

to characteristic functions of compact sets containing U£(0). Then we set tt(x) =

ü*(p)(x) = Xb3(o) (x)> where #3(0) is the ball with radius 3 and center in the origin.

We set v(x) = xr(x) where R = B£(0) U (B2(0)\Bx(0)) and verify

f ù<p\x)v(x)dx > f u<p\x)v<p\x)dx
Jn Jn

by computation, using (1.7) and (1.8). Now (1.24) follows after mollification of v

and ü.

II. Applications.
EXAMPLE 1. Capacitory problems. Let fii C Rn be starshaped with respect

to the origin and contain U£(0). Let fii <S fio C Rn, where fio is bounded and

starshaped with respect to zero. Let u G C0,1(fio), 0 < u < 1, be a solution to the

variational problem, p > 1,

(VI)    Min Jx(v) := / {-]v(x)[p + F(v(x))\ dx,
«eAi Jn (P J

where Ax := {v G W01,p(fi0)|t> = 1 on fii}.

COROLLARY 2.1. Suppose F: [0,1] —♦ R is monotone nondecreasing and con-

tinuous and that at least one of the conditions (i), (ii) or (iii) holds:

(i)  Problem (VI) has a unique solution.

(ii)  Problem (VI) has only smooth solutions.

(iii)  If the problem has two different solutions u and w, then either suppu D

suppw and u > w in suppu\fii, or suppw D suppu and w > u in

supp w\Tix. Furthermore, let F be nonconstant.

Then every solution u of problem (VI) has starshaped level sets.

Under assumptions (i) or (ii) the proof follows from Theorem 1.3, Theorem 1.6

and from the observation Jx(u*^) = Jx(u). Under assumption (iii) we note that

if u is a solution, then so is u*(p' and set w = u*^ to reach a contradiction.

Therefore, u = u*(p\

If F is differentiable with derivative /: [0,1] —» R, then solutions u of the vari-

ational problem (VI) are weak solutions of the degenerate elliptic boundary value

problem

(2.1) div(|Vu|p-2Vu) = f(u)   infi,

(2.2) u=l    ondfij,        u = 0   ondfi0.

If F is convex with subdifferential / = 3F, then u is the unique weak solution

of the differential inclusion

(2.3) div(|Vu|p-2Vti) e f(u)    in fi

under boundary conditions (2.2).
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Previous versions of Corollary 2.1 for special p and F (mainly F = 0, p = 2) are

known [2, 3, 11, 13, 15, 16, 22]. The novelty is that the starshapedness can now

be derived without monotonicity assumptions on / and without differentiability

assumptions on / or u.

Finally we want to indicate a case in which assumption (iii) of Corollary 2.1 is

satisfied. In the paper of A. Friedman and D. Phillips [9] one can find that (iii)

holds, provided

(2.4) p = 2,        f(t) = {%fo®    fal^l     for some o G (0,1)

and m < f0(t) <M,0<m<M<œ.
EXAMPLE 2. Exterior free boundary problems in the context of reaction-diffusion.

Let fii be given as before and let u: R™ —> [0,1] be a Lipschitz continuous solution

of the variational problem

(V2)    Min J2(v) := [ i-[Vv(x)[pdx + X2F(v(x))\ dx,
«a2 Jn IP J

where A2 := {v G W^2(Rn)\v = 1 on Ux},

where F: R —y Rq" is a convex, monotone nondecreasing function with F(0) = 0,

and where A G R+ is given. Furthermore, suppose that

(2.5) the support of u is bounded.

A sufficient condition for (2.5) is

(2.6) / [F(t)]'1/Pdt < oo,
Jo

as was kindly pointed out to me by J. I. Diaz [4]. As A tends to infinity, the support

of u shrinks to a boundary layer; see [7, 9]. As a consequence of Corollary 2.1 the

support of u and all level sets will be starshaped with respect to zero. A further

consequence is

COROLLARY 2.2. Suppose, in addition to the above assumptions on fii and F,

that

fii is starshaped with respect to each point

(2.7) y in a small nonempty closed neighborhood

Uf,(0) of the origin.

Then all the level sets fic of u for c G (0,1) and the support of u have Lipschitz-

continuous boundary.

For the proof we can construct a nonempty cone C with vertex on <3fic such that

dfic n G consists only of the vertex. Notice that (2.7) holds if fii is convex.

EXAMPLE 3. An exterior boundary value problem arising in potential flow. Let

u: Rn ->Rbea solution of the variational problem

(V3)    MmJ3(v):= [        {\Vv(x)\2 + X2X{v>o}(x)}dx,
v€A3 Jr«\{1,

where A3 := {v G W^(Rn)\v = 1 onÜ,}.
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Here xs denotes the characteristic function of a set 5. The following results were

derived in the pioneering paper [1] of H. W. Alt and L. Caffarelli. Let 3UX be

sufficiently smooth and fii bounded. Then there exists a solution u G A3 to

problem (V3). Any solution of (V3) has bounded support and belongs to G0,1(Rn).

Furthermore, u is harmonic in the set {x G R"\fii|u(x) > 0}, and 0 < u(x) < 1 in

Rn. Formally u is a solution to the free boundary problem

(2.8) Au = 0   on{u>0}\fii,

(2.9) u = l   ondfii,

(2.10) u = 0   and    |dit/dn| = A    on 3{u > 0}.

Notice that in particular the last condition has to be interpreted in a generalized

sense, since the free boundary 3{u > 0} might not be sufficiently smooth to define a

normal vector field on it. Assuming a certain flatness condition, the free boundary

is known to be of class C1,a and even analytic. This flatness condition can be

verified for the plane case n = 2. If the free boundary satisfies the interior sphere

condition, one can easily prove uniqueness [27, 28]; see also [25].

For dimensions n > 3 one has examples of solutions to (2.8), (2.9), (2.10) with

singular free boundary.

COROLLARY 2.4. Suppose that u is any solution of problem (V4), that fii is

bounded and satisfies (2.7). Then all the level sets of u are starshaped and the free

boundary 3{u > 0} is Lipschitz continuous.

For the proof we can modify an idea in [9, §1] and show that different solutions

u and v of (V4) are nested in the sense of Corollary 2.1 (iii). Then we can proceed

as in the proof of Corollary 2.1.

In two dimensions the starshapedness of {u > 0} was derived in [28] by a different

method.
An extension of this application to functional of type

J(v)= [    _ {]Vv(x)[2 + va(x)X{v>o}(x)}dx,       a6(0,l),
jRn\nx

is possible. Such a functional was studied in [21].

EXAMPLE 4. An obstacle problem. Let fio C R" be starshaped with respect to
zero and let dfio be sufficiently smooth. Let tp G G1,1 (fio) be given with ip < 0

on dfio, ip(Q) = max{V>(x)|x G fio}, and suppose that all the level sets of ip are

starshaped with respect to zero. Let tí be a solution of the variational problem

(V4) Min Jx(v),    where A4 := {v G W1'2(fi0)|t) > ip a.e. in fi0}.
vea4

Then under the assumptions of Corollary 2.1 the function u has starshaped level

sets. This can be deduced by cutting off ip at "height" V>(0) - 6 and by the limiting

process 6 —► 0+ [13]. For another proof under the stronger assumptions x • Vif> < 0

in fio\{0} and F convex, we refer to [11].
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