## Equivariant Morse theory for flows and an application to the $N$-body problem

HTML articles powered by AMS MathViewer

- by Filomena Pacella PDF
- Trans. Amer. Math. Soc.
**297**(1986), 41-52 Request permission

## Abstract:

In this paper, using Conley’s index and equivariant cohomology, some Morse type inequalities are deduced for a flow equivariant with respect to the action of a compact topological group. In the case of a gradient flow induced by a nondegenerate smooth function these inequalities coincide with those described by R. Bott. The theory is applied to the study of the central configurations of $N$-bodies.## References

- M. F. Atiyah and R. Bott,
*The Yang-Mills equations over Riemann surfaces*, Philos. Trans. Roy. Soc. London Ser. A**308**(1983), no. 1505, 523–615. MR**702806**, DOI 10.1098/rsta.1983.0017 - Vieri Benci,
*A geometrical index for the group $S^{1}$ and some applications to the study of periodic solutions of ordinary differential equations*, Comm. Pure Appl. Math.**34**(1981), no. 4, 393–432. MR**615624**, DOI 10.1002/cpa.3160340402 - Vieri Benci and Filomena Pacella,
*Morse theory for symmetric functionals on the sphere and an application to a bifurcation problem*, Nonlinear Anal.**9**(1985), no. 8, 763–773. MR**799882**, DOI 10.1016/0362-546X(85)90016-1 - Raoul Bott,
*Lectures on Morse theory, old and new*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), no. 2, 331–358. MR**663786**, DOI 10.1090/S0273-0979-1982-15038-8 - Raoul Bott,
*Nondegenerate critical manifolds*, Ann. of Math. (2)**60**(1954), 248–261. MR**64399**, DOI 10.2307/1969631 - Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144** - Charles Conley,
*Isolated invariant sets and the Morse index*, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR**511133**, DOI 10.1090/cbms/038 - Charles Conley and Eduard Zehnder,
*Morse-type index theory for flows and periodic solutions for Hamiltonian equations*, Comm. Pure Appl. Math.**37**(1984), no. 2, 207–253. MR**733717**, DOI 10.1002/cpa.3160370204
E. R. Fadell and S. Husseini, - Edward R. Fadell and Paul H. Rabinowitz,
*Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems*, Invent. Math.**45**(1978), no. 2, 139–174. MR**478189**, DOI 10.1007/BF01390270 - Karl H. Hofmann and Paul S. Mostert,
*Cohomology theories for compact abelian groups*, Springer-Verlag, New York-Heidelberg; VEB Deutscher Verlag der Wissenschaften, Berlin, 1973. With an appendix by Eric C. Nummela. MR**0372113**, DOI 10.1007/978-3-642-80670-4
D. Husemoller, - J. Milnor,
*Morse theory*, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR**0163331**, DOI 10.1515/9781400881802 - Julian I. Palmore,
*Classifying relative equilibria. II*, Bull. Amer. Math. Soc.**81**(1975), 489–491. MR**363076**, DOI 10.1090/S0002-9904-1975-13794-3 - Filomena Pacella,
*Central configurations of the $N$-body problem via equivariant Morse theory*, Arch. Rational Mech. Anal.**97**(1987), no. 1, 59–74. MR**856309**, DOI 10.1007/BF00279846
—, - Joel Smoller,
*Shock waves and reaction-diffusion equations*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR**688146**, DOI 10.1007/978-1-4684-0152-3 - M. Shub,
*Appendix to Smale’s paper: “Diagonals and relative equilibria”*, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 199–201. MR**0278700** - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112** - Arthur G. Wasserman,
*Equivariant differential topology*, Topology**8**(1969), 127–150. MR**250324**, DOI 10.1016/0040-9383(69)90005-6

*Relative cohomological index theories*(to appear).

*Fibre bundles*, Springer-Verlag, New York, 1966.

*Morse theory for flows in the presence of a symmetry group*, M. R. C. Rep. No. 2717, July 1984.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**297**(1986), 41-52 - MSC: Primary 58F25; Secondary 58E05, 58F40, 70F10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849465-9
- MathSciNet review: 849465