Weighted inequalities for the one-sided Hardy-Littlewood maximal functions

Author:
E. Sawyer

Journal:
Trans. Amer. Math. Soc. **297** (1986), 53-61

MSC:
Primary 42B25

DOI:
https://doi.org/10.1090/S0002-9947-1986-0849466-0

MathSciNet review:
849466

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let ${M^ + }f(x) = {\sup _{h > 0}}(1/h)\int _x^{x + h} {|f(t)| dt}$ denote the one-sided maximal function of Hardy and Littlewood. For $w(x) \geqslant 0$ on $R$ and $1 < p < \infty$, we show that ${M^ + }$ is bounded on ${L^p}(w)$ if and only if $w$ satisfies the one-sided ${A_p}$ condition: \[ \left ( {A_p^ + } \right )\qquad \left [ {\frac {1} {h}\int _{a - h}^a {w(x)dx} } \right ]{\left [ {\frac {1} {h}\int _a^{a + h} {w{{(x)}^{ - 1/(p - 1)}}dx} } \right ]^{p - 1}} \leqslant C\] for all real $a$ and positive $h$. If in addition $v(x) \geqslant 0$ and $\sigma = {v^{ - 1/(p - 1)}}$,then ${M^ + }$ is bounded from ${L^p}(v)$ to ${L^p}(w)$ if and only if \[ \int _I {{{[{M^ + }({\chi _I}\sigma )]}^p}w \leqslant C\int _I {\sigma < \infty } } \] for all intervals $I = (a,b)$ such that $\int _{ - \infty }^a {w > 0}$. The corresponding weak type inequality is also characterized. Further properties of $A_p^ +$ weights, such as $A_p^ + \Rightarrow A_{p - \varepsilon }^ +$ and $A_p^ + = (A_1^ + ){(A_1^ - )^{1 - p}}$, are established.

- Kenneth F. Andersen and Benjamin Muckenhoupt,
*Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions*, Studia Math.**72**(1982), no. 1, 9–26. MR**665888**, DOI https://doi.org/10.4064/sm-72-1-9-26 - Kenneth F. Andersen and Wo-Sang Young,
*On the reverse weak type inequality for the Hardy maximal function and the weighted classes $L({\rm log}\,L)^{k}$*, Pacific J. Math.**112**(1984), no. 2, 257–264. MR**743983** - E. Atencia and A. de la Torre,
*A dominated ergodic estimate for $L_{p}$ spaces with weights*, Studia Math.**74**(1982), no. 1, 35–47. MR**675431**, DOI https://doi.org/10.4064/sm-74-1-35-47 - R. Coifman, Peter W. Jones, and José L. Rubio de Francia,
*Constructive decomposition of BMO functions and factorization of $A_{p}$ weights*, Proc. Amer. Math. Soc.**87**(1983), no. 4, 675–676. MR**687639**, DOI https://doi.org/10.1090/S0002-9939-1983-0687639-3 - G. H. Hardy and J. E. Littlewood,
*A maximal theorem with function-theoretic applications*, Acta Math.**54**(1930), no. 1, 81–116. MR**1555303**, DOI https://doi.org/10.1007/BF02547518 - R. A. Hunt, D. S. Kurtz, and C. J. Neugebauer,
*A note on the equivalence of $A_{p}$ and Sawyer’s condition for equal weights*, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 156–158. MR**730066** - Björn Jawerth,
*Weighted inequalities for maximal operators: linearization, localization and factorization*, Amer. J. Math.**108**(1986), no. 2, 361–414. MR**833361**, DOI https://doi.org/10.2307/2374677 - Benjamin Muckenhoupt,
*Hardy’s inequality with weights*, Studia Math.**44**(1972), 31–38. MR**311856**, DOI https://doi.org/10.4064/sm-44-1-31-38 - Benjamin Muckenhoupt,
*Weighted norm inequalities for the Hardy maximal function*, Trans. Amer. Math. Soc.**165**(1972), 207–226. MR**293384**, DOI https://doi.org/10.1090/S0002-9947-1972-0293384-6
---, - Eric T. Sawyer,
*A characterization of a two-weight norm inequality for maximal operators*, Studia Math.**75**(1982), no. 1, 1–11. MR**676801**, DOI https://doi.org/10.4064/sm-75-1-1-11 - Eric Sawyer,
*Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator*, Trans. Amer. Math. Soc.**281**(1984), no. 1, 329–337. MR**719673**, DOI https://doi.org/10.1090/S0002-9947-1984-0719673-4

*Weighted reverse weak type inequalities for the Hardy-Littlewood maximal function*, preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42B25

Retrieve articles in all journals with MSC: 42B25

Additional Information

Article copyright:
© Copyright 1986
American Mathematical Society