À propos de ``wedges'' et d'``edges'', et de prolongements holomorphes
Author:
Jean-Pierre Rosay
Journal:
Trans. Amer. Math. Soc. 297 (1986), 63-72
MSC:
Primary 32A40; Secondary 32D15, 32E20
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849467-2
MathSciNet review:
849467
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Holomorphic extensions in wedges of continuous functions defined on edges, which are extensions in the distributional sense, are shown to be genuine continuous extensions, and a version of the edge of the wedge theorem is proved.
- [1] M. S. Baouendi and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), no. 2, 387–421. MR 607899, https://doi.org/10.2307/2006990
- [2] M. S. Baouendi, C. H. Chang, and F. Trèves, Microlocal hypo-analyticity and extension of CR functions, J. Differential Geom. 18 (1983), no. 3, 331–391. MR 723811
- [3] M. S. Baouendi, H. Jacobowitz, and F. Trèves, On the analyticity of CR mappings, Ann. of Math. (2) 122 (1985), no. 2, 365–400. MR 808223, https://doi.org/10.2307/1971307
- [4] Eric Bedford, Holomorphic continuation at a totally real edge, Math. Ann. 230 (1977), no. 3, 213–225. MR 457776, https://doi.org/10.1007/BF01367577
- [5] Al Boggess and John C. Polking, Holomorphic extension of CR functions, Duke Math. J. 49 (1982), no. 4, 757–784. MR 683002
- [6] S. I. Pinčuk, A boundary uniqueness theorem for holomorphic functions of several complex variables, Mat. Zametki 15 (1974), 205–212. MR 350065
- [7] -, Bogoljubov's theorem on the "edge of the wedge" for generic manifolds, Math. USSR-Sb. 23 (1974), 441-455.
- [8] Walter Rudin, Lectures on the edge-of-the-wedge theorem, American Mathematical Society, Providence, R.I., 1971. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 6. MR 0310288
- [9] Emil J. Straube, CR-distributions and analytic continuation at generating edges, Math. Z. 189 (1985), no. 1, 131–142. MR 776539, https://doi.org/10.1007/BF01246948
- [10] F. Trèves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, École Polytechnique, Centre de Mathématiques, Palaiseau, 1981. MR 716137
Retrieve articles in Transactions of the American Mathematical Society with MSC: 32A40, 32D15, 32E20
Retrieve articles in all journals with MSC: 32A40, 32D15, 32E20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849467-2
Article copyright:
© Copyright 1986
American Mathematical Society