## À propos de “wedges” et d’“edges”, et de prolongements holomorphes

HTML articles powered by AMS MathViewer

- by Jean-Pierre Rosay PDF
- Trans. Amer. Math. Soc.
**297**(1986), 63-72 Request permission

## Abstract:

Holomorphic extensions in wedges of continuous functions defined on edges, which are extensions in the distributional sense, are shown to be genuine continuous extensions, and a ${\mathcal {C}^1}$ version of the edge of the wedge theorem is proved.## References

- M. S. Baouendi and F. Trèves,
*A property of the functions and distributions annihilated by a locally integrable system of complex vector fields*, Ann. of Math. (2)**113**(1981), no. 2, 387–421. MR**607899**, DOI 10.2307/2006990 - M. S. Baouendi, C. H. Chang, and F. Trèves,
*Microlocal hypo-analyticity and extension of CR functions*, J. Differential Geom.**18**(1983), no. 3, 331–391. MR**723811**, DOI 10.4310/jdg/1214437782 - M. S. Baouendi, H. Jacobowitz, and F. Trèves,
*On the analyticity of CR mappings*, Ann. of Math. (2)**122**(1985), no. 2, 365–400. MR**808223**, DOI 10.2307/1971307 - Eric Bedford,
*Holomorphic continuation at a totally real edge*, Math. Ann.**230**(1977), no. 3, 213–225. MR**457776**, DOI 10.1007/BF01367577 - Al Boggess and John C. Polking,
*Holomorphic extension of CR functions*, Duke Math. J.**49**(1982), no. 4, 757–784. MR**683002**, DOI 10.1215/S0012-7094-82-04938-9 - S. I. Pinčuk,
*A boundary uniqueness theorem for holomorphic functions of several complex variables*, Mat. Zametki**15**(1974), 205–212. MR**350065**
—, - Walter Rudin,
*Lectures on the edge-of-the-wedge theorem*, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 6, American Mathematical Society, Providence, R.I., 1971. MR**0310288**, DOI 10.1090/cbms/006 - Emil J. Straube,
*CR-distributions and analytic continuation at generating edges*, Math. Z.**189**(1985), no. 1, 131–142. MR**776539**, DOI 10.1007/BF01246948 - F. Trèves,
*Approximation and representation of functions and distributions annihilated by a system of complex vector fields*, École Polytechnique, Centre de Mathématiques, Palaiseau, 1981. MR**716137**

*Bogoljubov’s theorem on the "edge of the wedge" for generic manifolds*, Math. USSR-Sb.

**23**(1974), 441-455.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**297**(1986), 63-72 - MSC: Primary 32A40; Secondary 32D15, 32E20
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849467-2
- MathSciNet review: 849467