Isometries on
Authors:
N. L. Carothers and B. Turett
Journal:
Trans. Amer. Math. Soc. 297 (1986), 95-103
MSC:
Primary 46E30; Secondary 46B20
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849469-6
MathSciNet review:
849469
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The extreme points of the sphere of the Lorentz function space are computed. As an application, the linear isometries from
into itself are completely described.
- [1] Z. Altshuler, The modulus of convexity of Lorentz and Orlicz sequence spaces, Notes in Banach spaces, Univ. Texas Press, Austin, Tex., 1980, pp. 359–378. MR 606225
- [2] B. Bru and H. Heinich, Isométries positives et propriétés ergodiques de quelques espaces de Banach, Ann. Inst. H. Poincaré Sect. B (N.S.) 17 (1981), no. 4, 377–405 (French, with English summary). MR 644353
- [3] J. R. Calder and J. B. Hill, A collection of sequence spaces, Trans. Amer. Math. Soc. 152 (1970), 107–118. MR 265913, https://doi.org/10.1090/S0002-9947-1970-0265913-8
- [4] N. L. Carothers, Rearrangement invariant subspaces of Lorentz function spaces, Israel J. Math. 40 (1981), no. 3-4, 217–228 (1982). MR 654578, https://doi.org/10.1007/BF02761363
- [5] -, Rearrangement invariant subspaces of Lorentz function spaces. II, preprint.
- [6] N. L. Carothers and P. H. Flinn, Embedding 𝑙_{𝑝}^{𝑛^{𝛼}} in 𝑙ⁿ_{𝑝,𝑞}, Proc. Amer. Math. Soc. 88 (1983), no. 3, 523–526. MR 699425, https://doi.org/10.1090/S0002-9939-1983-0699425-9
- [7] J. Creekmore, Type and cotype in Lorentz 𝐿_{𝑝𝑞} spaces, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no. 2, 145–152. MR 707247
- [8] Mahlon M. Day, Normed linear spaces, 3rd ed., Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. MR 0344849
- [9] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- [10] Israel Halperin, Function spaces, Canad. J. Math. 5 (1953), 273–288. MR 56195, https://doi.org/10.4153/cjm-1953-031-3
- [11] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- [12] Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing; Graduate Texts in Mathematics, No. 25. MR 0367121
- [13] Richard A. Hunt, On 𝐿(𝑝,𝑞) spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 223874
- [14] W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no. 217, v+298. MR 527010, https://doi.org/10.1090/memo/0217
- [15] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- [16] G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37–55. MR 33449, https://doi.org/10.2307/1969496
- [17] Richard O’Neil, Integral transforms and tensor products on Orlicz spaces and 𝐿(𝑝,𝑞) spaces, J. Analyse Math. 21 (1968), 1–276. MR 626853, https://doi.org/10.1007/bf02787670
- [18] H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR 0151555
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E30, 46B20
Retrieve articles in all journals with MSC: 46E30, 46B20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849469-6
Keywords:
Linear isometries,
Lorentz function spaces,
extreme points
Article copyright:
© Copyright 1986
American Mathematical Society