Unknotting information from -manifolds
Authors:
T. D. Cochran and W. B. R. Lickorish
Journal:
Trans. Amer. Math. Soc. 297 (1986), 125-142
MSC:
Primary 57M25; Secondary 57M12, 57Q20, 57Q60
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849471-4
MathSciNet review:
849471
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Results of S. K. Donaldson, and others, concerning the intersection forms of smooth -manifolds are used to give new information on the unknotting numbers of certain classical knots. This information is particularly sensitive to the signs of the knot crossings changed in an unknotting process.
- [1] Selman Akbulut and Robion Kirby, Branched covers of surfaces in 4-manifolds, Math. Ann. 252 (1979/80), no. 2, 111–131. MR 593626, https://doi.org/10.1007/BF01420118
- [2] S. A. Bleiler, Tangles, string primality and concordance, Ph.D. dissertation, Univ. of Oregon, 1981.
- [3] Andrew J. Casson and John L. Harer, Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981), no. 1, 23–36. MR 634760
- [4] A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 39–53. MR 520521
- [5] Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 43–45. MR 788388, https://doi.org/10.1090/S0273-0979-1985-15357-1
- [6] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315. MR 710056
- [7] Ronald Fintushel and Ronald J. Stern, 𝑆𝑂(3)-connections and the topology of 4-manifolds, J. Differential Geom. 20 (1984), no. 2, 523–539. MR 788294
- [8] Ronald Fintushel and Ronald J. Stern, Pseudofree orbifolds, Ann. of Math. (2) 122 (1985), no. 2, 335–364. MR 808222, https://doi.org/10.2307/1971306
- [9] Michael H. Freedman, The disk theorem for four-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 647–663. MR 804721
- [10] Robert E. Gompf, Infinite families of Casson handles and topological disks, Topology 23 (1984), no. 4, 395–400. MR 780732, https://doi.org/10.1016/0040-9383(84)90002-8
- [11] -, Smooth concordance of topologically slice knots, Topology (in press).
- [12] C. McA. Gordon, Some aspects of classical knot theory, Knot theory (Proc. Sem., Plans-sur-Bex, 1977) Lecture Notes in Math., vol. 685, Springer, Berlin, 1978, pp. 1–60. MR 521730
- [13] Robion Kirby, A calculus for framed links in 𝑆³, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, https://doi.org/10.1007/BF01406222
- [14] Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
- [15] Ken’ichi Kuga, Representing homology classes of 𝑆²×𝑆², Topology 23 (1984), no. 2, 133–137. MR 744845, https://doi.org/10.1016/0040-9383(84)90034-X
- [16] W. B. Raymond Lickorish, The unknotting number of a classical knot, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 117–121. MR 813107, https://doi.org/10.1090/conm/044/813107
- [17]
J. W. Milnor, On simply-connected
-manifolds, Sympos. Internat. Top. Alg. (Mexico. 1956), Mexico, 1958, pp. 122-128.
- [18] H. Murakami, Two-bridge knots with unknotting number one (to appear).
- [19] Kunio Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387–422. MR 171275, https://doi.org/10.1090/S0002-9947-1965-0171275-5
- [20] Yasutaka Nakanishi, A note on unknotting number, Math. Sem. Notes Kobe Univ. 9 (1981), no. 1, 99–108. MR 634000
- [21] Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001
- [22] Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. MR 0515288
- [23] Martin G. Scharlemann, Unknotting number one knots are prime, Invent. Math. 82 (1985), no. 1, 37–55. MR 808108, https://doi.org/10.1007/BF01394778
- [24] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251–264. MR 248854, https://doi.org/10.1017/s0305004100044947
- [25] H. Wendt, Die gordische Auflösung von Knoten, Math. Z. 42 (1937), no. 1, 680–696 (German). MR 1545700, https://doi.org/10.1007/BF01160103
Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M25, 57M12, 57Q20, 57Q60
Retrieve articles in all journals with MSC: 57M25, 57M12, 57Q20, 57Q60
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849471-4
Keywords:
Unknotting number,
kinkiness,
Donaldson's theorem,
-manifold,
branched covering,
signature
Article copyright:
© Copyright 1986
American Mathematical Society