A regularity theorem for minimizing hypersurfaces modulo $\nu$
HTML articles powered by AMS MathViewer
- by Frank Morgan PDF
- Trans. Amer. Math. Soc. 297 (1986), 243-253 Request permission
Abstract:
It is proved that an $(n - 1)$-dimensional, area-minimizing flat chain modulo $\nu$ in ${{\mathbf {R}}^n}$, with smooth extremal boundary of at most $\nu /2$ components, has an interior singular set of Hausdorff dimension at most $n - 8$. Similar results hold for more general integrands.References
- Frederick J. Almgren Jr. and Leon Simon, Existence of embedded solutions of Plateauโs problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), no.ย 3, 447โ495. MR 553794
- J. E. Brothers (ed.), Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp.ย 441โ464. MR 840292, DOI 10.1090/pspum/044/840292
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Herbert Federer, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767โ771. MR 260981, DOI 10.1090/S0002-9904-1970-12542-3
- Robert Hardt and Leon Simon, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. (2) 110 (1979), no.ย 3, 439โ486. MR 554379, DOI 10.2307/1971233
- Frank Morgan, Calibrations modulo $\nu$, Adv. in Math. 64 (1987), no.ย 1, 32โ50. MR 879855, DOI 10.1016/0001-8708(87)90003-X
- Frank Morgan, Examples of unoriented area-minimizing surfaces, Trans. Amer. Math. Soc. 283 (1984), no.ย 1, 225โ237. MR 735418, DOI 10.1090/S0002-9947-1984-0735418-6
- Frank Morgan, Harnack-type mass bounds and Bernstein theorems for area-minimizing flat chains modulo $\nu$, Comm. Partial Differential Equations 11 (1986), no.ย 12, 1257โ1283. MR 857167, DOI 10.1080/03605308608820464
- Frank Morgan, On finiteness of the number of stable minimal hypersurfaces with a fixed boundary, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no.ย 2, 133โ136. MR 799795, DOI 10.1090/S0273-0979-1985-15396-0
- R. Schoen, L. Simon, and F. J. Almgren Jr., Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II, Acta Math. 139 (1977), no.ย 3-4, 217โ265. MR 467476, DOI 10.1007/BF02392238
- Jean E. Taylor, Regularity of the singular sets of two-dimensional area-minimizing flat chains modulo $3$ in $R^{3}$, Invent. Math. 22 (1973), 119โ159. MR 333903, DOI 10.1007/BF01392299
- Brian White, Regularity of area-minimizing hypersurfaces at boundaries with multiplicity, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp.ย 293โ301. MR 795244 โ, A regularity theorem for minimizing hypersurfaces modulo $p$, Proc. Sympos. Pure Math., vol. 44 (W. K. Allard and F. J. Almgren, Jr., ed.), Amer. Math. Soc., Providence, R. I., 1986, pp. 413-427.
- Brian White, The structure of minimizing hypersurfaces mod $4$, Invent. Math. 53 (1979), no.ย 1, 45โ58. MR 538683, DOI 10.1007/BF01403190
Additional Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 297 (1986), 243-253
- MSC: Primary 49F22; Secondary 53A10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849477-5
- MathSciNet review: 849477