## A regularity theorem for minimizing hypersurfaces modulo $\nu$

HTML articles powered by AMS MathViewer

- by Frank Morgan PDF
- Trans. Amer. Math. Soc.
**297**(1986), 243-253 Request permission

## Abstract:

It is proved that an $(n - 1)$-dimensional, area-minimizing flat chain modulo $\nu$ in ${{\mathbf {R}}^n}$, with smooth extremal boundary of at most $\nu /2$ components, has an interior singular set of Hausdorff dimension at most $n - 8$. Similar results hold for more general integrands.## References

- Frederick J. Almgren Jr. and Leon Simon,
*Existence of embedded solutions of Plateauโs problem*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**6**(1979), no.ย 3, 447โ495. MR**553794** - J. E. Brothers (ed.),
*Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute*, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp.ย 441โ464. MR**840292**, DOI 10.1090/pspum/044/840292 - Herbert Federer,
*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR**0257325** - Herbert Federer,
*The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension*, Bull. Amer. Math. Soc.**76**(1970), 767โ771. MR**260981**, DOI 10.1090/S0002-9904-1970-12542-3 - Robert Hardt and Leon Simon,
*Boundary regularity and embedded solutions for the oriented Plateau problem*, Ann. of Math. (2)**110**(1979), no.ย 3, 439โ486. MR**554379**, DOI 10.2307/1971233 - Frank Morgan,
*Calibrations modulo $\nu$*, Adv. in Math.**64**(1987), no.ย 1, 32โ50. MR**879855**, DOI 10.1016/0001-8708(87)90003-X - Frank Morgan,
*Examples of unoriented area-minimizing surfaces*, Trans. Amer. Math. Soc.**283**(1984), no.ย 1, 225โ237. MR**735418**, DOI 10.1090/S0002-9947-1984-0735418-6 - Frank Morgan,
*Harnack-type mass bounds and Bernstein theorems for area-minimizing flat chains modulo $\nu$*, Comm. Partial Differential Equations**11**(1986), no.ย 12, 1257โ1283. MR**857167**, DOI 10.1080/03605308608820464 - Frank Morgan,
*On finiteness of the number of stable minimal hypersurfaces with a fixed boundary*, Bull. Amer. Math. Soc. (N.S.)**13**(1985), no.ย 2, 133โ136. MR**799795**, DOI 10.1090/S0273-0979-1985-15396-0 - R. Schoen, L. Simon, and F. J. Almgren Jr.,
*Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II*, Acta Math.**139**(1977), no.ย 3-4, 217โ265. MR**467476**, DOI 10.1007/BF02392238 - Jean E. Taylor,
*Regularity of the singular sets of two-dimensional area-minimizing flat chains modulo $3$ in $R^{3}$*, Invent. Math.**22**(1973), 119โ159. MR**333903**, DOI 10.1007/BF01392299 - Brian White,
*Regularity of area-minimizing hypersurfaces at boundaries with multiplicity*, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp.ย 293โ301. MR**795244**
โ, - Brian White,
*The structure of minimizing hypersurfaces mod $4$*, Invent. Math.**53**(1979), no.ย 1, 45โ58. MR**538683**, DOI 10.1007/BF01403190

*A regularity theorem for minimizing hypersurfaces modulo*$p$, Proc. Sympos. Pure Math., vol. 44 (W. K. Allard and F. J. Almgren, Jr., ed.), Amer. Math. Soc., Providence, R. I., 1986, pp. 413-427.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**297**(1986), 243-253 - MSC: Primary 49F22; Secondary 53A10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849477-5
- MathSciNet review: 849477