BMO rational approximation and one-dimensional Hausdorff content

Author:
Joan Verdera

Journal:
Trans. Amer. Math. Soc. **297** (1986), 283-304

MSC:
Primary 30E10; Secondary 28A20, 30B40, 46E15

DOI:
https://doi.org/10.1090/S0002-9947-1986-0849480-5

MathSciNet review:
849480

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be compact and let . We give necessary and sufficient conditions on and for to be the limit of a sequence of rational functions without poles on in the norm of , the space of functions of bounded mean oscillation on . We also characterize those compact with the property that the restriction to of each function in , which is holomorphic on , is the limit of a sequence of rational functions with poles off . Our conditions involve the notion of one-dimensional Hausdorff content. As an application, a result related to the inner boundary conjecture is proven.

**[1]**Lennart Carleson,*Selected problems on exceptional sets*, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0225986****[2]**A. M. Davie,*Analytic capacity and approximation problems*, Trans. Amer. Math. Soc.**171**(1972), 409–444. MR**350009**, https://doi.org/10.1090/S0002-9947-1972-0350009-9**[3]**Theodore W. Gamelin,*Uniform algebras*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969. MR**0410387****[4]**John Garnett,*Analytic capacity and measure*, Lecture Notes in Mathematics, Vol. 297, Springer-Verlag, Berlin-New York, 1972. MR**0454006****[5]**John B. Garnett,*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971****[6]**-,*Positive length but zero analytic capacity*, Proc. Amer. Math. Soc.**24**(1970), 696-699.**[7]**John Garnett,*Metric conditions for rational approximation*, Duke Math. J.**37**(1970), 689–699. MR**269851****[8]**Reese Harvey and John Polking,*Removable singularities of solutions of linear partial differential equations*, Acta Math.**125**(1970), 39–56. MR**279461**, https://doi.org/10.1007/BF02838327**[9]**Robert Kaufman,*Hausdorff measure, BMO, and analytic functions*, Pacific J. Math.**102**(1982), no. 2, 369–371. MR**686557****[10]**Per Lindberg,*A constructive method for 𝐿^{𝑝}-approximation by analytic functions*, Ark. Mat.**20**(1982), no. 1, 61–68. MR**660125**, https://doi.org/10.1007/BF02390498**[11]**M. S. Melnikov,*Metric properties of analytic*-*capacity and approximation of analytic functions with Holder condition by rational functions*, Math. USSR-Sb.**8**(1969), 115-124.**[12]**M. S. Melnikov and A. G. Vitushkin,*Analytic capacity and rational approximation*, Lecture Notes in Math., vol. 1043, Springer-Verlag, Berlin and New York, 1983, pp. 495-497.**[13]**Anthony G. O’Farrell,*Hausdorff content and rational approximation in fractional Lipschitz norms*, Trans. Amer. Math. Soc.**228**(1977), 187–206. MR**432887**, https://doi.org/10.1090/S0002-9947-1977-0432887-2**[14]**Anthony G. O’Farrell,*Estimates for capacities, and approximation in Lipschitz norms*, J. Reine Angew. Math.**311(312)**(1979), 101–115. MR**549960**, https://doi.org/10.1515/crll.1979.311-312.101**[15]**A. G. O’Farrell,*Qualitative rational approximation on plane compacta*, Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981) Lecture Notes in Math., vol. 995, Springer, Berlin, 1983, pp. 103–122. MR**717230**, https://doi.org/10.1007/BFb0061890**[16]**Cora Sadosky,*Interpolation of operators and singular integrals*, Monographs and Textbooks in Pure and Applied Math., vol. 53, Marcel Dekker, Inc., New York, 1979. An introduction to harmonic analysis. MR**551747****[17]**Donald Sarason,*Functions of vanishing mean oscillation*, Trans. Amer. Math. Soc.**207**(1975), 391–405. MR**377518**, https://doi.org/10.1090/S0002-9947-1975-0377518-3**[18]**Sven Spanne,*Some function spaces defined using the mean oscillation over cubes*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)**19**(1965), 593–608. MR**190729****[19]**A. G. Vituškin,*Analytic capacity of sets in problems of approximation theory*, Uspehi Mat. Nauk**22**(1967), no. 6 (138), 141–199 (Russian). MR**0229838****[20]**T. H. Wolff,*Restrictions of**weights*, preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30E10,
28A20,
30B40,
46E15

Retrieve articles in all journals with MSC: 30E10, 28A20, 30B40, 46E15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0849480-5

Keywords:
Rational function,
approximation,
BMO,
Hausdorff content

Article copyright:
© Copyright 1986
American Mathematical Society