Analytic perturbation of the Taylor spectrum
Author:
Zbigniew Slodkowski
Journal:
Trans. Amer. Math. Soc. 297 (1986), 319-336
MSC:
Primary 47A56; Secondary 32A99, 47A10, 47D99
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849482-9
MathSciNet review:
849482
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let ,
, be analytic families of bounded operators in a complex Banach space
, such that for each
the operators
and
,
, commute. Main result: If
denotes the Taylor spectrum of the tuple
, then the set-valued function
is analytic. Analyticity of such set-valued functions is defined here by a simultaneous local maximum property of
-tuples of complex polynomials on the graph of
.
- [1] Bernard Aupetit, Analytic multivalued functions in Banach algebras and uniform algebras, Adv. in Math. 44 (1982), no. 1, 18–60. MR 654547, https://doi.org/10.1016/0001-8708(82)90064-0
- [2] Richard F. Basener, Several dimensional properties of the spectrum of a uniform algebra, Pacific J. Math. 74 (1978), no. 2, 297–306. MR 499306
- [3] A. Ja. Helemskiĭ, Homological methods in the holomorphic calculus of several operators in Banach space, after Taylor, Uspekhi Mat. Nauk 36 (1981), no. 1(217), 127–172, 248 (Russian). MR 608943
- [4] Peter John Hilton and Urs Stammbach, A course in homological algebra, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 4. MR 0346025
- [5] K. Oka, Note sur les familles de fonctions analytiques multiformes, etc., J. Sci. Hiroshima Univ. Ser. A4 (1934), 93-98.
- [6] T. J. Ransford, Analytic multivalued functions, Dissertation for the Annual Fellowship Competition, Trinity College, Cambridge, 1983.
- [7] Zbigniew Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1977), no. 3, 239–255. MR 461172, https://doi.org/10.4064/sm-61-3-239-255
- [8] Zbigniew Słodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), no. 3, 363–386. MR 626955, https://doi.org/10.1007/BF01679703
- [9] Z. Słodkowski, Analytic families of operators: variation of the spectrum, Proc. Roy. Irish Acad. Sect. A 81 (1981), no. 1, 121–126. MR 635585
- [10] Zbigniew Slodkowski, Uniform algebras and analytic multifunctions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 75 (1983), no. 1-2, 9–18 (1984) (English, with Italian summary). MR 780802
- [11]
-, Analytic multifunctions,
-plurisubharmonic functions and uniform algebras, Proc. Conf. on Banach Algebras and Several Complex Variables, Yale Univ. (F. Greenleaf and D. Gulick, eds.), Contemp. Math., Vol. 32, Amer. Math. Soc., Providence, R.I., 1983, pp. 12-14.
- [12]
-, Local maximum property and
-plurisubharmonic functions in uniform algebras, J. Math. Anal. Appl. (to appear).
- [13] -, A generalization of Vesentini and Wermer's theorems, Rend. Sem. Mat. Univ. Padova (to appear).
- [14] Zbigniew Slodkowski, Operators with closed ranges in spaces of analytic vector-valued functions, J. Funct. Anal. 69 (1986), no. 2, 155–177. MR 865219, https://doi.org/10.1016/0022-1236(86)90087-X
- [15] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127–148. MR 346555, https://doi.org/10.4064/sm-50-2-127-148
- [16] Joseph L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172–191. MR 0268706, https://doi.org/10.1016/0022-1236(70)90055-8
- [17] Joseph L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1–38. MR 271741, https://doi.org/10.1007/BF02392329
- [18] Zbigniew Slodkowski, An analytic set-valued selection and its applications to the corona theorem, to polynomial hulls and joint spectra, Trans. Amer. Math. Soc. 294 (1986), no. 1, 367–377. MR 819954, https://doi.org/10.1090/S0002-9947-1986-0819954-1
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A56, 32A99, 47A10, 47D99
Retrieve articles in all journals with MSC: 47A56, 32A99, 47A10, 47D99
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849482-9
Keywords:
Analytic multifunction,
local maximum property,
joint spectrum,
Taylor spectrum,
exact complex,
analytic perturbation
Article copyright:
© Copyright 1986
American Mathematical Society