Analytic perturbation of the Taylor spectrum
HTML articles powered by AMS MathViewer
- by Zbigniew Slodkowski
- Trans. Amer. Math. Soc. 297 (1986), 319-336
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849482-9
- PDF | Request permission
Abstract:
Let ${T_1}(z), \ldots ,{T_m}(z)$, $z \in G \subset {{\mathbf {C}}^k}$, be analytic families of bounded operators in a complex Banach space $X$, such that for each $z \in G$ the operators ${T_i}(z)$ and ${T_j}(z)$, $i,j = 1, \ldots ,n$, commute. Main result: If $K(z)$ denotes the Taylor spectrum of the tuple $({T_1}(z), \ldots ,{T_m}(z))$, then the set-valued function $K:G \to {2^{{\mathbf {C}}m}}$ is analytic. Analyticity of such set-valued functions is defined here by a simultaneous local maximum property of $k$-tuples of complex polynomials on the graph of $K$.References
- Bernard Aupetit, Analytic multivalued functions in Banach algebras and uniform algebras, Adv. in Math. 44 (1982), no. 1, 18–60. MR 654547, DOI 10.1016/0001-8708(82)90064-0
- Richard F. Basener, Several dimensional properties of the spectrum of a uniform algebra, Pacific J. Math. 74 (1978), no. 2, 297–306. MR 499306
- A. Ja. Helemskiĭ, Homological methods in the holomorphic calculus of several operators in Banach space, after Taylor, Uspekhi Mat. Nauk 36 (1981), no. 1(217), 127–172, 248 (Russian). MR 608943
- Peter John Hilton and Urs Stammbach, A course in homological algebra, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR 0346025 K. Oka, Note sur les familles de fonctions analytiques multiformes, etc., J. Sci. Hiroshima Univ. Ser. A4 (1934), 93-98. T. J. Ransford, Analytic multivalued functions, Dissertation for the Annual Fellowship Competition, Trinity College, Cambridge, 1983.
- Zbigniew Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1977), no. 3, 239–255. MR 461172, DOI 10.4064/sm-61-3-239-255
- Zbigniew Słodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), no. 3, 363–386. MR 626955, DOI 10.1007/BF01679703
- Z. Słodkowski, Analytic families of operators: variation of the spectrum, Proc. Roy. Irish Acad. Sect. A 81 (1981), no. 1, 121–126. MR 635585
- Zbigniew Slodkowski, Uniform algebras and analytic multifunctions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 75 (1983), no. 1-2, 9–18 (1984) (English, with Italian summary). MR 780802 —, Analytic multifunctions, $q$-plurisubharmonic functions and uniform algebras, Proc. Conf. on Banach Algebras and Several Complex Variables, Yale Univ. (F. Greenleaf and D. Gulick, eds.), Contemp. Math., Vol. 32, Amer. Math. Soc., Providence, R.I., 1983, pp. 12-14. —, Local maximum property and $q$-plurisubharmonic functions in uniform algebras, J. Math. Anal. Appl. (to appear). —, A generalization of Vesentini and Wermer’s theorems, Rend. Sem. Mat. Univ. Padova (to appear).
- Zbigniew Slodkowski, Operators with closed ranges in spaces of analytic vector-valued functions, J. Funct. Anal. 69 (1986), no. 2, 155–177. MR 865219, DOI 10.1016/0022-1236(86)90087-X
- Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127–148. MR 346555, DOI 10.4064/sm-50-2-127-148
- Joseph L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172–191. MR 0268706, DOI 10.1016/0022-1236(70)90055-8
- Joseph L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1–38. MR 271741, DOI 10.1007/BF02392329
- Zbigniew Slodkowski, An analytic set-valued selection and its applications to the corona theorem, to polynomial hulls and joint spectra, Trans. Amer. Math. Soc. 294 (1986), no. 1, 367–377. MR 819954, DOI 10.1090/S0002-9947-1986-0819954-1
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 297 (1986), 319-336
- MSC: Primary 47A56; Secondary 32A99, 47A10, 47D99
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849482-9
- MathSciNet review: 849482