Some product formulae for nonsimply connected surgery problems
HTML articles powered by AMS MathViewer
- by R. J. Milgram and Andrew Ranicki
- Trans. Amer. Math. Soc. 297 (1986), 383-413
- DOI: https://doi.org/10.1090/S0002-9947-1986-0854074-1
- PDF | Request permission
Abstract:
For an $n$-dimensional normal map $f :{M^n} \to {N^n}$ with finite fundamental group ${\pi _1}(N) = \pi$ and PL $1$ torsion kernel $Z[\pi ]$-modules ${K_{\ast }}(M)$ the surgery obstruction ${\sigma _{\ast }}(f) \in L_n^h(Z[\pi ])$ is expressed in terms of the projective classes $[{K_{\ast }}(M)] \in {\tilde K_0}(Z[\pi ])$, assuming ${K_i}(M) = 0$ if $n = 2i$. This expression is used to evaluate in certain cases the surgery obstruction ${\sigma _ {\ast } }(g) \in L_{m + n}^h(Z[{\pi _1} \times \pi ])$ of the $(m + n)$-dimensional normal map $g = 1 \times f:{M_1} \times M \to {M_1} \times N$ defined by product with an $m$-dimensional manifold ${M_1}$, where ${\pi _1} = {\pi _1}({M_1})$.References
- Anthony Bak and Manfred Kolster, The computation of odd-dimensional projective surgery groups of finite groups, Topology 21 (1982), no. 1, 35–63. MR 630879, DOI 10.1016/0040-9383(82)90040-4
- Sylvain E. Cappell and Julius L. Shaneson, A counterexample on the oozing problem for closed manifolds, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 627–634. MR 561242 G. Carlesson and J. Milgram, The structure of odd $L$-groups, (Proc. Waterloo Conf. on Algebraic Topology), Lecture Notes in Math., vol. 741, Springer-Verlag, New York, 1979, pp. 1-72.
- Gunnar Carlsson and R. James Milgram, Some exact sequences in the theory of Hermitian forms, J. Pure Appl. Algebra 18 (1980), no. 3, 233–252. MR 593615, DOI 10.1016/0022-4049(80)90001-8 —, The oriented odd $L$-groups of finite groups (preprint).
- F. J.-B. J. Clauwens, The $K$-theory of almost symmetric forms, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 115, Math. Centrum, Amsterdam, 1979, pp. 41–49. MR 565824
- James F. Davis, The surgery semicharacteristic, Proc. London Math. Soc. (3) 47 (1983), no. 3, 411–428. MR 716796, DOI 10.1112/plms/s3-47.3.411
- Ian Hambleton, Projective surgery obstructions on closed manifolds, Algebraic $K$-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 101–131. MR 689390
- Ian Hambleton and R. James Milgram, The surgery obstruction groups for finite $2$-groups, Invent. Math. 61 (1980), no. 1, 33–52. MR 587332, DOI 10.1007/BF01389893 J. Milgram, Surgery with finite fundamental group I: The obstructions (to appear).
- William Pardon, Local surgery and the exact sequence of a localization for Wall groups, Mem. Amer. Math. Soc. 12 (1977), no. 196, iv+171. MR 458450, DOI 10.1090/memo/0196
- William Pardon, The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions, Pacific J. Math. 102 (1982), no. 1, 123–170. MR 682048
- A. A. Ranicki, Algebraic $L$-theory. I. Foundations, Proc. London Math. Soc. (3) 27 (1973), 101–125. MR 414661, DOI 10.1112/plms/s3-27.1.101
- Andrew Ranicki, On the algebraic $L$-theory of semisimple rings, J. Algebra 50 (1978), no. 1, 242–243. MR 479891, DOI 10.1016/0021-8693(78)90185-0 —, The algebraic theory of surgery. I, II, Proc. London Math. Soc. (3) 40 (1980), 87-192; 40 (1980), 193-283,
- Andrew Ranicki, Exact sequences in the algebraic theory of surgery, Mathematical Notes, vol. 26, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 620795
- C. P. Rourke and D. P. Sullivan, On the Kervaire obstruction, Ann. of Math. (2) 94 (1971), 397–413. MR 305416, DOI 10.2307/1970764 L. Taylor and B. Williams, Surgery on closed manifolds (preprint).
- C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. (2) 84 (1966), 217–276. MR 212827, DOI 10.2307/1970519
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
- C. T. C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103 (1976), no. 1, 1–80. MR 432737, DOI 10.2307/1971019
- James F. Davis and Andrew A. Ranicki, Semi-invariants in surgery, $K$-Theory 1 (1987), no. 1, 83–109. MR 899918, DOI 10.1007/BF00533988
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 297 (1986), 383-413
- MSC: Primary 57R67
- DOI: https://doi.org/10.1090/S0002-9947-1986-0854074-1
- MathSciNet review: 854074