Homologie de l’espace des sections d’un fibré
HTML articles powered by AMS MathViewer
- by Claude Legrand
- Trans. Amer. Math. Soc. 297 (1986), 445-459
- DOI: https://doi.org/10.1090/S0002-9947-1986-0854077-7
- PDF | Request permission
Abstract:
For a fiber bundle with a finite cohomology dimension and $1$-connected base $B$ and $1$-connected fiber $F$, we obtain the homology of the section space by an ${E^1}$-spectral sequence. In the "stable" range the ${E^1}$-terms are the homology of a product of Eilenberg-Mac Lane space of type $K({H^{p - i}}(B;{\pi _p}F),i)$ (the same as those of the ${E^1}$-spectral sequences which converges to the homology of the functional space $\operatorname {Hom} (B,F)$ [10]). The differential is the product of two operations: one appears in the ${E^1}$-spectral sequence, which converges to the homology of $\operatorname {Hom} (B,F)$; the second one is a "cup-product" determined by the fiber structure of the bundle. This spectral sequence is obtained by a Moore-Postnikov tower of the fiber, which generalizes Kahn’s methods [9].References
- Armand Borel, Topics in the homology theory of fibre bundles, Lecture Notes in Mathematics, No. 36, Springer-Verlag, Berlin-New York, 1967. Lectures given at the University of Chicago, 1954; Notes by Edward Halpern. MR 0221507, DOI 10.1007/BFb0096867
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480 H. Cartan and W. Shih, Classes d’applications d’un espace dans un groupe topologique, Séminaire E. N. S. H. Cartan 1962/1963.
- F. R. Cohen and L. R. Taylor, The homology of function spaces, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 39–50. MR 711041, DOI 10.1090/conm/019/711041
- A. Didierjean and A. Legrand, Suites spectrales de Serre en homotopie, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 2, 227–242 (French). MR 746503, DOI 10.5802/aif.971
- Geneviève Didierjean, Homotopie de l’espace des équivalences d’homotopie fibrées, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 3, 33–47 (French). MR 810666, DOI 10.5802/aif.1017
- Herbert Federer, A study of function spaces by spectral sequences, Trans. Amer. Math. Soc. 82 (1956), 340–361. MR 79265, DOI 10.1090/S0002-9947-1956-0079265-2
- André Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), no. 2, 609–620. MR 667163, DOI 10.1090/S0002-9947-1982-0667163-8
- Donald W. Kahn, The spectral sequence of a Postnikov system, Comment. Math. Helv. 40 (1966), 169–198. MR 195096, DOI 10.1007/BF02564370
- Claude Legrand, Sur l’homologie des espaces fonctionnels, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 7, 429–432 (French, with English summary). MR 732851
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- J. C. Moore, On a theorem of Borsuk, Fund. Math. 43 (1956), 195–201. MR 83123, DOI 10.4064/fm-43-2-195-201 —, Séminaire Cartan 1954/1955, exposé 18-19.
- Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505 (French). MR 45386, DOI 10.2307/1969485
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 R. Thom, L’homologie des espaces fonctionnels, Colloque de Topologie Algébrique, Louvain, 1956.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 297 (1986), 445-459
- MSC: Primary 55R10; Secondary 55R20, 55S45, 55T05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0854077-7
- MathSciNet review: 854077