Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The intersection topology w.r.t. the real line and the countable ordinals
HTML articles powered by AMS MathViewer

by G. M. Reed PDF
Trans. Amer. Math. Soc. 297 (1986), 509-520 Request permission

Abstract:

If ${\Upsilon _1}$ and ${\Upsilon _2}$ are topologies defined on the set $X$, then the intersection topology w.r.t. ${\Upsilon _1}$ and ${\Upsilon _2}$ is the topology $\Upsilon$ on $X$ such that $\{ {U_1} \cap {U_2}|{U_1} \in {\Upsilon _1}\;{\text {and}}\;{U_2} \in {\Upsilon _2}\}$ is a basis for $(X,\Upsilon )$. In this paper, the author considers spaces in the class $\mathcal {C}$, where $(X,\Upsilon ) \in \mathcal {C}$ iff $X = \{ {x_\alpha }|\alpha < {\omega _1}\} \subseteq {\mathbf {R}}$, ${\Upsilon _{\mathbf {R}}}$ is the inherited real line topology on $X$, ${\Upsilon _{{\omega _1}}}$ is the order topology on $X$ of type ${\omega _1}$, and $\Upsilon$ is the intersection topology w.r.t. ${\Upsilon _{\mathbf {R}}}$ and ${\Upsilon _{{\omega _1}}}$. This class is shown to be a surprisingly useful tool in the study of abstract spaces. In particular, it is shown that: (1) If $X \in \mathcal {C}$, then $X$ is a completely regular, submetrizable, pseudo-normal, collectionwise Hausdorff, countably metacompact, first countable, locally countable space with a base of countable order that is neither subparacompact, metalindelöf, cometrizable, nor locally compact. (2) $(\operatorname {MA} + \neg \operatorname {CH} )$ If $X \in \mathcal {C}$, then $X$ is perfect. (3) There exists in ZFC an $X \in \mathcal {C}$ such that $X$ is not normal. (4) $(\operatorname {CH} )$ There exists $X \in \mathcal {C}$ such that $X$ is collectionwise normal and ${\omega _1}$-compact but not perfect.
References
  • K. Alster and R. Pol, Moore spaces and collectionwise Hausdorff property, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), no. 11, 1189–1192 (English, with Russian summary). MR 394582
  • R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175–186. MR 43449, DOI 10.4153/cjm-1951-022-3
  • J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 11, 993–998 (English, with Russian summary). MR 515000
  • H. Cook, Cartesian products and continuous semi-metrics, preprint.
  • C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951), 219–224. MR 43446, DOI 10.4153/cjm-1951-026-2
  • Eric K. van Douwen and David J. Lutzer, On the classification of stationary sets, Michigan Math. J. 26 (1979), no. 1, 47–64. MR 514960
  • G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math. (Szeged) 17 (1956), 139–142 (German). MR 82450
  • A. Hajnal and I. Juhász, On hereditarily $\alpha$-Lindelöf and hereditarily $\alpha$-separable spaces, Ann. Univ. Sci. Budapest 9 (1968), 115-124.
  • M. Katětov, Measures in fully normal spaces, Fund. Math. 38 (1951), 73–84. MR 48531, DOI 10.4064/fm-38-1-73-84
  • N. Lusin, Sur un problème de M. Baire, C. R. Hebdomadaires Seances Acad. Sci. Paris 158 (1914), 1258-1261. P. Mahlo, Über Teilmengen des Kontinuums von dessen Machtigkeit, Sitzungsberichte der Sachsischen Akademie der Wissenschaften zu Leipzig, Mathematish-Naturwissenschaftliche Klasse 65, pp. 283-315.
  • R. Pol, A perfectly normal locally metrizable non-paracompact space, Fund. Math. 97 (1977), no. 1, 37–42. MR 464178, DOI 10.4064/fm-139-1-37-47
  • Elżbieta Pol and Roman Pol, A hereditarily normal strongly zero-dimensional space with a subspace of positive dimension and an $N$-compact space of positive dimension, Fund. Math. 97 (1977), no. 1, 43–50. MR 464179, DOI 10.4064/fm-97-1-51-52
  • Teodor C. Przymusiński, Normality and separability of Moore spaces, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975–1976) Academic Press, New York, 1977, pp. 325–337. MR 0448310
  • G. M. Reed, $Q$-sets and Shelah’s Principle, Notices Amer. Math. Soc. 26 (1979), A124. —, A note on duality in $S$ and $L$ spaces, Abstracts Amer. Math. Soc. 2 (1981), 178-179.
  • G. M. Reed, Submetrizable topologies on the ordinals, Topology and order structures, Part 2 (Amsterdam, 1981) Math. Centre Tracts, vol. 169, Math. Centrum, Amsterdam, 1983, pp. 63–64. MR 736696
  • —, On normality and countable paracompactness, Notices Amer. Math. Soc. 22 (1975), A126.
  • G. M. Reed, Collectionwise Hausdorff versus collectionwise normal with respect to compact sets, Topology Appl. 16 (1983), no. 3, 259–272. MR 722119, DOI 10.1016/0166-8641(83)90023-8
  • G. M. Reed, On continuous images of Moore spaces, Canadian J. Math. 26 (1974), 1475–1479. MR 397672, DOI 10.4153/CJM-1974-142-3
  • G. M. Reed, On chain conditions in Moore spaces, General Topology and Appl. 4 (1974), 255–267. MR 345076
  • G. M. Reed, Concerning first countable spaces. III, Trans. Amer. Math. Soc. 210 (1975), 169–177. MR 372828, DOI 10.1090/S0002-9947-1975-0372828-8
  • G. M. Reed, On the existence of point countable bases in Moore spaces, Proc. Amer. Math. Soc. 45 (1974), 437–440. MR 348713, DOI 10.1090/S0002-9939-1974-0348713-9
  • —, On subspaces of separable first countable ${T_2}$-spaces, Fund. Math. 91 (1976), 199-211.
  • Juichi Shinoda, Some consequences of Martin’s axiom and the negation of the continuum hypothesis, Nagoya Math. J. 49 (1973), 117–125. MR 319754
  • F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Ph. D. Thesis, Univ. of Wisconsin, 1969. S. Ulam, Zur masstheorie in der allgeneinen Mengenlehre, Fund. Math. 16 (1930), 141-150.
  • Michael L. Wage, A collectionwise Hausdorff, non-normal Moore space, Canadian J. Math. 28 (1976), no. 3, 632–634. MR 405363, DOI 10.4153/CJM-1976-062-5
  • J. M. Worrell, Isolated sets of points in non-metrizable spaces, Notices Amer. Math. Soc. 11 (1964), 250.
  • J. M. Worrell Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canadian J. Math. 17 (1965), 820–830. MR 182945, DOI 10.4153/CJM-1965-080-3
  • Phillip Zenor, On countable paracompactness and normality, Prace Mat. 13 (1969), 23–32. MR 0248724
Similar Articles
Additional Information
  • © Copyright 1986 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 297 (1986), 509-520
  • MSC: Primary 54A10; Secondary 03E50, 54A35, 54D18
  • DOI: https://doi.org/10.1090/S0002-9947-1986-0854081-9
  • MathSciNet review: 854081