On the factorizations of ordinary linear differential operators
HTML articles powered by AMS MathViewer
- by G. J. Etgen, G. D. Jones and W. E. Taylor
- Trans. Amer. Math. Soc. 297 (1986), 717-728
- DOI: https://doi.org/10.1090/S0002-9947-1986-0854095-9
- PDF | Request permission
Abstract:
Relations are found between the nonvanishing of certain Wronskians and disconjugacy properties of ${L_n}y + py = 0$, where ${L_n}y$ is a disconjugate operator and $p$ is sign definite. The results are then used to show ways in which ${L_n}y + py$ can be factored.References
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785
- Uri Elias, Oscillatory solutions and extremal points for a linear differential equation, Arch. Rational Mech. Anal. 71 (1979), no. 2, 177–198. MR 525223, DOI 10.1007/BF00248726
- Uri Elias, Comparison theorems for disfocality and disconjugacy of differential equations, SIAM J. Math. Anal. 15 (1984), no. 5, 922–931. MR 755852, DOI 10.1137/0515069
- Gary D. Jones, An ordering of oscillation types for $y^{(n)}+py=0$, SIAM J. Math. Anal. 12 (1981), no. 1, 72–77. MR 603419, DOI 10.1137/0512007 —, Oscillation properties of ${y^n} + py = 0$, Proc. Amer. Math. Soc. 78 (1980), 230-244.
- G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), no. 4, 312–324. MR 1501228, DOI 10.1090/S0002-9947-1922-1501228-5
- Erhard Heinz, Halbbeschränktheit gewöhnlicher Differentialoperatoren höherer Ordnung, Math. Ann. 135 (1958), 1–49 (German). Vorwort von B. L. van der Waerden. MR 101941, DOI 10.1007/BF01350826
- Anton Zettl, Factorization of differential operators, Proc. Amer. Math. Soc. 27 (1971), 425–426. MR 273085, DOI 10.1090/S0002-9939-1971-0273085-5
- Anton Zettl, General theory of the factorization of ordinary linear differential operators, Trans. Amer. Math. Soc. 197 (1974), 341–353. MR 364724, DOI 10.1090/S0002-9947-1974-0364724-6
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 297 (1986), 717-728
- MSC: Primary 34C10; Secondary 34B05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0854095-9
- MathSciNet review: 854095