Surgery on codimension one immersions in $\textbf {R}^ {n+1}$: removing $n$-tuple points
HTML articles powered by AMS MathViewer
- by J. Scott Carter
- Trans. Amer. Math. Soc. 298 (1986), 83-101
- DOI: https://doi.org/10.1090/S0002-9947-1986-0857434-8
- PDF | Request permission
Abstract:
The self-intersection sets of immersed $n$-manifolds in $(n + 1)$-space provide invariants of the $n$th stable stem and the $(n + 1)$st stable homotopy of infinite real projective space. Theorems of Eccles [5] and others [1, 8, 14, 19] relate these invariants to classically defined homotopy theoretic invariants. In this paper a surgery theory of immersions is developed; the given surgeries affect the self-intersection sets in specific ways. Using such operations a given immersion may be surgered to remove $(n + 1)$-tuple and $n$-tuple points, provided the ${\mathbf {Z}}/2$-valued $(n + 1)$-tuple point invariant vanishes $(n \geq 5)$. This invariant agrees with the Kervaire invariant for $n = 4k + 1$. These results first appeared in my dissertation [2]; a summary was presented in [3]. Some results and methods have been improved since these works were written. In particular, the proof of Theorem 14 has been simplified.References
- Thomas F. Banchoff, Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46 (1974), 407–413. MR 377897, DOI 10.1090/S0002-9939-1974-0377897-1 J. Scott Carter, Surgery on immersions: A geometric approach to stable homotopy, Dissertation, Yale Univ., May 1982.
- Haynes R. Miller and Stewart B. Priddy (eds.), Proceedings of the Northwestern Homotopy Theory Conference, Contemporary Mathematics, vol. 19, American Mathematical Society, Providence, R.I., 1983. Held at Northwestern University, Evanston, Ill., March 22–26, 1982. MR 711037
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin-New York, 1980. MR 562913, DOI 10.1007/978-3-662-21943-0
- Peter John Eccles, Multiple points of codimension one immersions, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 23–38. MR 585650
- Peter John Eccles, Multiple points of codimension one immersions of oriented manifolds, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 2, 213–220. MR 553578, DOI 10.1017/S030500410005667X
- Peter John Eccles, Codimension one immersions and the Kervaire invariant one problem, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 3, 483–493. MR 628831, DOI 10.1017/S0305004100058941
- Michael H. Freedman, Quadruple points of $3$-manifolds in $S^{4}$, Comment. Math. Helv. 53 (1978), no. 3, 385–394. MR 505553, DOI 10.1007/BF02566085
- D. Hilbert and S. Cohn-Vossen, Geometry and the imagination, Chelsea Publishing Co., New York, N. Y., 1952. Translated by P. Neményi. MR 0046650
- Daniel S. Kahn and Stewart B. Priddy, On the transfer in the homology of symmetric groups, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 1, 91–101. MR 464229, DOI 10.1017/S0305004100054323
- Daniel S. Kahn and Stewart B. Priddy, On the transfer in the homology of symmetric groups, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 1, 91–101. MR 464229, DOI 10.1017/S0305004100054323
- Ulrich Koschorke, Multiple points of immersions, and the Kahn-Priddy theorem, Math. Z. 169 (1979), no. 3, 223–236. MR 554526, DOI 10.1007/BF01214837 —, Vector fields and other vector-bundle morphisms—a singularity approach, Lecture Notes in Math., vol. 847, Springer-Verlag, Berlin and New York, 1981.
- Ulrich Koschorke and Brian Sanderson, Geometric interpretations of the generalized Hopf invariant, Math. Scand. 41 (1977), no. 2, 199–217. MR 474289, DOI 10.7146/math.scand.a-11714
- Ulrich Koschorke and Brian Sanderson, Self-intersections and higher Hopf invariants, Topology 17 (1978), no. 3, 283–290. MR 508891, DOI 10.1016/0040-9383(78)90032-0
- J. Lannes, Sur les immersions de Boy, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 263–270 (French). MR 764583, DOI 10.1007/BFb0075571
- Graeme Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213–221. MR 331377, DOI 10.1007/BF01390197
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- Pierre Vogel, Cobordisme d’immersions, Ann. Sci. École Norm. Sup. (4) 7 (1974), 317–357 (1975) (French). MR 372878, DOI 10.24033/asens.1272
- Robert Wells, Cobordism groups of immersions, Topology 5 (1966), 281–294. MR 196760, DOI 10.1016/0040-9383(66)90011-5 J. Scott Carter, On generalizing Boy’s surface: Constructing a generator of the third stable stem, Trans. Amer. Math. Soc. John F. Hughes, Invariants of regular homotopy and bordism of low dimensional immersions, Dissertation, Univ. of California, Berkeley, 1982.
- George W. Whitehead, Recent advances in homotopy theory, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 5, American Mathematical Society, Providence, R.I., 1970. MR 0309097
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 298 (1986), 83-101
- MSC: Primary 57R42; Secondary 55N22, 55Q10, 57R65
- DOI: https://doi.org/10.1090/S0002-9947-1986-0857434-8
- MathSciNet review: 857434