Rational Moore $G$-spaces
HTML articles powered by AMS MathViewer
- by Peter J. Kahn
- Trans. Amer. Math. Soc. 298 (1986), 245-271
- DOI: https://doi.org/10.1090/S0002-9947-1986-0857443-9
- PDF | Request permission
Abstract:
This paper obtains some existence and uniqueness results for Moore spaces in the context of the equivariant homotopy theory of Bredon. This theory incorporates fixed-point-set data as part of the structure and so is a refinement of the classical equivariant homotopy theory. To avoid counterexamples to existence in the classical case and to focus on new phenomena involving the fixed-point-set structure, most of the results involve rational spaces. In this setting, there are no obstacles to existence, but a notion of projective dimension presents an obstacle to uniqueness: uniqueness is proved, subject to constraint on the projective dimension, and an example shows that this constraint is sharp. Various related existence results are proved and computations are given of certain equivariant mapping sets $[X, Y]$, $X$ an equivariant Moore space.References
- James E. Arnold Jr., On Steenrod’s problem for cyclic $p$-groups, Canadian J. Math. 29 (1977), no. 2, 421–428. MR 440536, DOI 10.4153/CJM-1977-044-2
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062, DOI 10.1007/BFb0082690
- Gunnar Carlsson, A counterexample to a conjecture of Steenrod, Invent. Math. 64 (1981), no. 1, 171–174. MR 621775, DOI 10.1007/BF01393939
- Gunnar Carlsson, An Adams-type spectral sequence for change of rings, Houston J. Math. 4 (1978), no. 4, 541–550. MR 523612
- George Cooke, Replacing homotopy actions by topological actions, Trans. Amer. Math. Soc. 237 (1978), 391–406. MR 461544, DOI 10.1090/S0002-9947-1978-0461544-2
- A. D. Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 275–284. MR 690052, DOI 10.1090/S0002-9947-1983-0690052-0
- Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466
- Peter J. Kahn, Steenrod’s problem and $k$-invariants of certain classifying spaces, Algebraic $K$-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 195–214. MR 689393, DOI 10.2307/3617141
- Peter J. Kahn, Equivariant homology decompositions, Trans. Amer. Math. Soc. 298 (1986), no. 1, 273–287. MR 857444, DOI 10.1090/S0002-9947-1986-0857444-0 W. Lück, Diplomarbeit, Univ. of Göttingen, 1981.
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215 M. Rothenberg and G. Triantafillou, An algebraic model for simple homotopy types, Univ. of Minnesota Math. Report 83-112, 1984.
- Justin R. Smith, Equivariant Moore spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 238–270. MR 802793, DOI 10.1007/BFb0074446
- Richard G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148–158. MR 244215, DOI 10.1007/BF01389798
- Georgia V. Triantafillou, Equivariant minimal models, Trans. Amer. Math. Soc. 274 (1982), no. 2, 509–532. MR 675066, DOI 10.1090/S0002-9947-1982-0675066-8 —, $G$-spaces with prescribed equivariant cohomology, Univ. of Minnesota (preprint).
- Georgia Višnjić Triantafillou, Rationalization for Hopf $G$-spaces, Math. Z. 182 (1983), no. 4, 485–500. MR 701365, DOI 10.1007/BF01215478
- Pierre Vogel, On Steenrod’s problem for nonabelian finite groups, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 660–665. MR 764607, DOI 10.1007/BFb0075595
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$ complexes. II, Proc. Roy. Soc. London Ser. A 295 (1966), 129–139. MR 211402, DOI 10.1098/rspa.1966.0230
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 298 (1986), 245-271
- MSC: Primary 55N25; Secondary 55P62, 55Q05, 57S17
- DOI: https://doi.org/10.1090/S0002-9947-1986-0857443-9
- MathSciNet review: 857443