Fixed sets of framed $G$-manifolds
HTML articles powered by AMS MathViewer
- by Stefan Waner
- Trans. Amer. Math. Soc. 298 (1986), 421-429
- DOI: https://doi.org/10.1090/S0002-9947-1986-0857451-8
- PDF | Request permission
Abstract:
This note describes restrictions on the framed bordism class of a framed manifold $Y$ in order that it be the fixed set of some framed $G$-manifold $M$ with $G$ a finite group. These results follow from a recently proved generalization of the Segal conjecture, and imply, in particular, that if $M$ is a framed $G$-manifold of sufficiently high dimension, and if $G$ is a $p$-group, then the number of ânoncancellingâ fixed points is either zero or approaches infinity as the dimension of $M$ goes to infinity. Conversely, we give sufficient conditions on the framed bordism class of a manifold $Y$ that it be the fixed set of some framed $G$-manifold $M$ of arbitrarily high dimension.References
- J. F. Adams, J. P. Haeberly, S. Jackowski and J. P. May, A generalization of the Segal conjecture, Preprint, Univ. of Chicago, 1985.
- Gunnar Carlsson, Equivariant stable homotopy and Segalâs Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no. 2, 189â224. MR 763905, DOI 10.2307/2006940
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- J. Caruso and S. Waner, An approximation theorem for equivariant loop spaces in the compact Lie case, Pacific J. Math. 117 (1985), no. 1, 27â49. MR 777436, DOI 10.2140/pjm.1985.117.27
- H. Hauschild, Zerspaltung Ă€quivarianter Homotopiemengen, Math. Ann. 230 (1977), no. 3, 279â292 (German). MR 500966, DOI 10.1007/BF01367581
- Czes Kosniowski, A note on $\textrm {RO}(G)$ graded $G$ bordism theory, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 104, 411â419. MR 388418, DOI 10.1093/qmath/26.1.411
- W. Pulikowski, $R\textrm {O}(G)$-graded $G$-bordism theory, Bull. Acad. Polon. Sci. SĂ©r. Sci. Math. Astronom. Phys. 21 (1973), 991â995 (English, with Russian summary). MR 339234
- Stefan Waner, Classification of oriented equivariant spherical fibrations, Trans. Amer. Math. Soc. 271 (1982), no. 1, 313â324. MR 648095, DOI 10.1090/S0002-9947-1982-0648095-8
- Stefan Waner, Equivariant $R\textrm {O}(G)$-graded bordism theories, Topology Appl. 17 (1984), no. 1, 1â26. MR 730020, DOI 10.1016/0166-8641(84)90019-1
- Arthur G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127â150. MR 250324, DOI 10.1016/0040-9383(69)90005-6
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 298 (1986), 421-429
- MSC: Primary 57R85; Secondary 57S17
- DOI: https://doi.org/10.1090/S0002-9947-1986-0857451-8
- MathSciNet review: 857451