HYPOELLIPTIC CONVOLUTION EQUATIONS
IN THE SPACE K'_e

DAE HYEON PAHK

Abstract. We consider convolution equations in the space K'_e of distributions which “grow” no faster than $\exp(e^{k|x|})$ for some constant k. Our main results are to find conditions for convolution operators to be hypoelliptic in K'_e in terms of their Fourier transforms.

1. Introduction. In [6] G. Sampson and Z. Zielézny studied hypoelliptic convolution equations in the space K'_e of distributions which “grow” no faster than $\exp(k|x|^p)$ for some constant k. We extend these investigations to the space K'_e of distributions which grow no faster than $\exp(e^{k|x|})$ for some constant k.

More precisely, we study convolution equations of the form

$$S \ast U = V$$

where S is a distribution of $\mathcal{O}'(K'_e, K'_e)$ the space of convolution operators in K'_e and $U, V \in K'_e$. The space $\mathcal{E}K'_e$ of C^∞-functions in K'_e is defined in a natural way and equation (1) (or S) is said to be hypoelliptic in K'_e if all solutions $U \in K'_e$ are in $\mathcal{E}K'_e$ whenever $V \in \mathcal{E}K'_e$.

Our main results are the following theorems.

Theorem 1. The following conditions are necessary for a convolution operator $S \in \mathcal{O}'(K'_e, K'_e)$ to be hypoelliptic in K'_e:

(h1) There exist positive constants B and M such that
$$|\hat{S}(\xi)| \geq |\xi|^{-B} \quad \text{if } \xi \in \mathbb{R}^n \text{ and } |\xi| \geq M.$$ (h2) $\Omega(\eta)/\log|\varsigma| \to \infty$ as $|\varsigma| \to \infty$, $\varsigma \in \mathbb{C}^n$ and $\hat{S}(\varsigma) = 0$, where
$$\Omega(x) = (|x| + 1) \log(|x| + 1) - |x|.$$ (h3) For all positive constants m, ε, there exist positive constants B, C such that $|\hat{S}(\varsigma)| \geq |\varsigma|^{-B} e^{-\Omega(\varepsilon \varsigma)}$ whenever $\varsigma = \xi + i\eta \in \mathbb{C}^n$, $\Omega(\eta) \leq m \log|\varsigma|$ and $|\varsigma| \geq C$.

Theorem 2. The following condition is sufficient for a distribution S in $\mathcal{O}'(K'_e, K'_e)$ to be hypoelliptic in K'_e:

(h4) Given $\varepsilon > 0$ one can find a $B > 0$ such that for every m there exists a constant $C_m > 0$ so that $|\hat{S}(\varsigma)| \geq |\varsigma|^{-B} \exp(-\Omega(\varepsilon \varsigma))$ whenever $\varsigma = \xi + i\eta \in \mathbb{C}^n$, $\Omega(\eta) \leq m \log|\varsigma|$ and $|\varsigma| \geq C_m$.
Before proving these results, we briefly recall all the spaces and facts involved in this paper. See [4] for details.

The spaces \mathcal{K}_e and \mathcal{K}_e'. We denote \mathcal{K}_e the space of all functions $\phi \in C^\infty(\mathbb{R}^n)$ such that

$$\nu_k(\phi) = \sup_{x \in \mathbb{R}^n, |\alpha| \leq k} \exp(e^{|x|})|D^\alpha \phi(x)| < \infty, \quad k = 1, 2, \ldots,$$

or equivalently,

$$\sup_{x \in \mathbb{R}^n, |\alpha| \leq k} \exp(M(kx))|D^\alpha \phi(x)| < \infty \quad \text{where} \quad M(x) = e^{|x|} - |x| - 1.$$

By \mathcal{K}_e' we mean the space of continuous linear functionals on \mathcal{K}_e which are represented by $D^m[\exp(e^{|x|})f(x)]$ for some positive integers m, k and a bounded continuous function in \mathbb{R}^n, where $D = D_1 D_2 \cdots D_n$.

The spaces $O_c(\mathcal{K}_e', \mathcal{K}_e')$ and $\mathcal{E}_c(\mathcal{K}_e', \mathcal{K}_e')$. We denote by $O_c(\mathcal{K}_e', \mathcal{K}_e')$ the space of convolution operators S in \mathcal{K}_e' with the following structure: for every integer $k > 0$ there exists an integer $m \geq 0$ such that $S = \sum_{|\alpha| \leq m} D^\alpha f_\alpha$, where f_α are continuous functions in \mathbb{R}^n whose product with $\exp(e^{|x|})$ is bounded. We also denote by $\mathcal{E}_c(\mathcal{K}_e', \mathcal{K}_e')$ the spaces of all C^∞-functions f in \mathbb{R}^n such that $D^\alpha f(x) = O(\exp(e^{|x|})$ as $|x| \to \infty$, for some constants a (depending on f) and all multi-indices α.

Furthermore, we have Paley-Wiener type theorems for functions in \mathcal{K}_e and distributions in $O_c(\mathcal{K}_e', \mathcal{K}_e')$. An entire function $F(\xi)$ is a Fourier transform of a function in \mathcal{K}_e if and only if, for every integer $N \geq 0$ and every $\epsilon > 0$ there exists a constant C such that

$$|F(\xi + i\eta)| \leq C(1 + |\xi|)^{-N} e^{\Omega(\epsilon\eta)}$$

where $\zeta = \xi + i\eta \in \mathbb{C}^n$, and an entire function $F(\xi)$ is a Fourier transform of a distribution S in $O_c(\mathcal{K}_e', \mathcal{K}_e')$ if and only if for every $\epsilon > 0$ there exist constants N and C such that

$$|F(\xi + i\eta)| \leq C(1 + |\xi|)^N e^{\Omega(\epsilon\eta)}$$

where $\zeta = \xi + i\eta \in \mathbb{C}^n$.

We also use the following relations between dual functions $M(x)$ and $\omega(x)$ in the sense of Young, i.e. the generating functions $\mu(x) = e^{|x|} - 1$ and $\omega(x) = \log(|x| + 1)$ are mutually inverse;

$$\sup_{x \in \mathbb{R}^n} \exp(-M(kx) + |x| |\eta|) = \exp \left(\Omega \left(\frac{1}{k} \eta \right) \right).$$

2. Necessary conditions. Proofs of the necessary conditions are based on an idea similar to that used in [8]. We begin with a lemma.

Lemma 1. Let T be a distribution whose Fourier transform is of the form

$$\hat{T} = \sum_{j=1}^{\infty} a_j \delta(\zeta_j)$$

where $\zeta_j = \xi_j + i\eta_j \in \mathbb{C}^n$ satisfy the conditions

(3) $\Omega(\eta_j) \leq m \log |\zeta_j|,$

(4) $|\zeta_j| > 2|\zeta_{j-1}| > 2^j, \quad j = 1, 2, \ldots,$
for a given positive integer \(m \) and
\[
a_j = O(|\xi_j|^\mu) \quad \text{as } j \to \infty
\]
for some positive integer \(\mu \). Then the series in (2) converges in \(K'_e \). We assert that
\[
T \in \mathcal{E}K'_e \text{ if and only if }
\]
(6) \(a_j = O(|\xi_j|^{-\nu}) \quad \text{as } j \to \infty \)
for every \(\nu \in \mathbb{N} \).

PROOF. By (2), (5), and the fact that a set \(B \) is bounded in \(K_e \) if and only if, for every \(N \) and \(\varepsilon > 0 \), there exists a constant \(C > 0 \) such that
\[
|\hat{\phi}(\xi)| \leq C(1 + |\xi|)^{-N}e^{\Omega(\varepsilon)}
\]
for all \(\xi \in \mathbb{C}^n \) and all \(\phi \in B \), the series \(T = \sum_{j=1}^{\infty} a_j \exp(2\pi i \langle x, \xi_j \rangle) \) converges in \(K'_e \). If the coefficients \(a_j \) satisfy condition (6),
\[
|D^\alpha T(x)| = \left| \sum_{j=1}^{\infty} a_j (2\pi i \xi_j)^\alpha \exp(2\pi i \langle x, \xi_j \rangle) \right|
\]
\[
\leq C_{\nu, x} \sum_{j=1}^{\infty} |\xi_j|^{|\alpha| - \nu} \exp(2\pi |x| |\eta_j|)
\]
\[
\leq C_{\nu, x} \sum_{j=1}^{\infty} |\xi_j|^{|\alpha| - \nu + m} \exp(2\pi |x| |\eta_j| - \Omega(\eta_j))
\]
\[
\leq C_{\nu, x} \exp(M(2\pi |x|)) \sum_{j=1}^{\infty} |\xi_j|^{|\alpha| - \nu + m}
\]
in view of (3). If we choose \(\nu \) greater than \(|\alpha| + m + 2\) and make use of (4), \(T \) is in \(\mathcal{E}K'_e \).

Conversely, assume that \(T \) is in \(\mathcal{E}K'_e \). Then, for every \(\nu \in \mathbb{N} \) and every \(\phi \in K_e \),
\[
\langle \exp(i \langle u, x \rangle) \Delta^\nu T(x), \phi(x) \rangle \to 0 \quad \text{as } |u| \to \infty, \quad u \in \mathbb{C}^n \text{ and } \Omega(\text{Im } u) \leq m \log |\xi|.
\]
In fact,
\[
|\langle \exp(i \langle u, x \rangle) \Delta^\nu T(x), \phi(x) \rangle| = \left| \frac{1}{(iu)^i} \int_{\mathbb{R}^n} \Delta^\nu T(x) \phi(x) D_x^i \exp(i \langle u, x \rangle) dx \right|
\]
\[
\leq \frac{1}{|u|^i} \int_{\mathbb{R}^n} |D_x(\Delta^\nu T(x) \phi(x))| \exp(|\text{Im } u| |x|) dx
\]
\[
\leq \frac{C}{|u|^i} \int_{\mathbb{R}^n} \exp(-M(2x) + |\text{Im } u| |x|) dx
\]
\[
\leq \frac{C}{|u|^i} \sup_{x \in \mathbb{R}^n} \exp(-M(x) + |\text{Im } u| |x|) \int_{\mathbb{R}^n} \exp(-M(x)) dx
\]
\[
\leq \frac{C}{|u|^i} \exp(\Omega(\text{Im } u)) \leq \frac{C|u|^m}{|u|^l} \to 0
\]
as \(|u| \to \infty, \ u \in \mathbb{C}^n \text{ and } \Omega(\text{Im } u) \leq m \log |u|, \) provided that \(l \) is greater than \(m \).

Passing to the Fourier transform, we get
\[
\langle \tau_u (\xi, \xi') \nu \hat{T}(\xi), \hat{\phi}(\xi) \rangle = \sum_{j=1}^{\infty} a_j \langle \xi_j, \xi_j \rangle^\nu \hat{\phi}(\xi_j - u) \to 0
\]
(7)
as $|u| \to \infty$, $u \in \mathbb{C}^n$ and $\Omega(\text{Im} u) \leq m \log |u|$. We fix a function ϕ in \mathcal{K}_e such that $\phi(0) \geq 1$.

Suppose now that condition (6) is not satisfied. Then there are a $\rho > 0$ and a $\nu_0 \in \mathbb{N}$ such that

$$|\zeta_j|^{2\nu_0} |a_j| \geq \rho$$

for a subsequence of $\{a_j\}$, which we may take as the whole sequence without loss of generality. Using a Paley-Wiener type theorem for the ϕ, we get

$$\hat{\phi}(\zeta) = O(|\zeta|^{-k}) \quad \text{for every } k \text{ when } \zeta \in \mathbb{C}^n \text{ and } \Omega(\text{Im } \zeta) \leq m \log |\zeta|.$$

Making use of (4), (5) and (9), we obtain the estimate

$$\sum_{j=1}^{\infty} a_j \langle \zeta_j, \zeta_j \rangle^{\nu_0} \hat{\phi}(\zeta_j - \zeta_k) = O(2^{-k}).$$

On the other hand, in view of (8), we have $|a_k| |\zeta_k|^{2\nu_0} \hat{\phi}(0) \geq \rho$. This contradicts the convergence of (7). Our assertion is thus established.

Proof of Theorem 1. It is sufficient to prove (h3), since (h3) implies (h1) and (h2). Assume (h3) is not satisfied. Then there exist constants ε_0 and m_0 such that for every $k = 1, 2, \ldots$, there is a $\zeta_k \in \mathbb{C}^n$ such that

$$|\zeta_k| \geq 2|\zeta_{k-1}| \geq 2^k, \quad \Omega(\eta_k) \leq m_0 \log |\zeta_k| \quad \text{and}$$

$$|\hat{S}(\zeta_k)| \leq |\zeta_k|^{-k} \exp(-\Omega(\varepsilon_0 \eta_k)), \quad k = 1, 2, \ldots.$$

Then the series $\sum_{j=1}^{\infty} \exp(2\pi i \langle x, \zeta_j \rangle)$ converges to U, say, in \mathcal{K}'_e and it is not in $\mathcal{E}\mathcal{K}'_e$. The convolution $S * U$ is transformed according to the formula

$$S*U = \hat{S}\hat{U} = \sum_{j=1}^{\infty} \hat{S}(\zeta_j) \delta(\zeta_j).$$

By (10) and Lemma 1, $S * U$ is in $\mathcal{E}\mathcal{K}'_e$. This contradicts the hypoellipticity of S in \mathcal{K}'_e.

3. Sufficient condition. We intend to prove that condition (h4) is sufficient for a distribution S in $\mathcal{O}'(\mathcal{K}'_e, \mathcal{K}'_e)$ to be hypoelliptic in \mathcal{K}'_e. In order to prove our assertion we define suitable parametrices for a distribution S in $\mathcal{O}'(\mathcal{K}'_e, \mathcal{K}'_e)$ and prove that these parametrices exist if S fulfills the condition (h4).

In what follows b and k are positive integers.

Definition. A distribution P in \mathcal{K}'_e is said to be a (b, k)-parametrix for S if it has the following properties:

(P1) There exists an integer $m > 0$ such that $P = \sum |\alpha| \leq mD^\alpha f_\alpha$ where f_α, $|\alpha| \leq m$, are continuous functions in \mathbb{R}^n such that $f_\alpha(x) = O(\exp(-M(bx)))$ as $|x| \to \infty$.

(P2) $S * P = \delta - W$ where δ is the Dirac measure and W is a function in $C^k(\mathbb{R}^n)$ satisfying the growth condition $D^\alpha W(x) = O(\exp(-M(bx)))$ as $|x| \to \infty$ when $|\alpha| \leq k$.

We first show that this definition of a parametrix is suitable for our purpose.
Theorem 3. Let S be a distribution in $\mathcal{O}'(\mathcal{K}'_e, \mathcal{K}'_e)$ such that for every pair (b, k) of positive integers there exists a (b, k)-parametrix for S. Then S is hypoelliptic in \mathcal{K}'_e.

Proof. Suppose that U is a solution in \mathcal{K}'_e of the equation $S \ast U = V$ where V is in $\mathcal{E}'\mathcal{K}'_e$. By the structure theorem, we can write $U = D^\beta f$ for some β where f is a continuous function in \mathbb{R}^n such that

$$f(x) = O(\exp(M(b_1 x)))$$

as $|x| \to \infty$, for some integer $b_1 > 0$. On the other hand, V is a C^∞-function in \mathbb{R}^n such that for all multi-index α

$$D^\alpha V(x) = O(\exp(M(b_2 x)))$$

as $|x| \to \infty$, for some integer $b_2 > 0$.

Suppose now that l is any given positive integer. By assumption there exists a (b, k)-parametrix P for S with $b = 2b_1 + 2b_2 + 1$ and $k = l + |\beta|$; i.e.

$$S \ast P = \delta - W$$

where P and W satisfy the growth conditions in (P1) and (P2).

From (13) it follows that

$$U = U \ast \delta = U \ast (S \ast P) + U \ast W = V \ast P + U \ast W$$

where the convolutions are well defined and the associativity is legitimate because of the rate of decrease of P and W.

But $V \ast P$ is in $\mathcal{E}'\mathcal{K}'_e$, since, by (P1), $D^\alpha ((V \ast P) = \sum_{|\beta| \leq m} (D^{\alpha + \beta} V) \ast f_\beta$ where $f_\beta(x) = O(\exp(-M(\beta x)))$ as $|x| \to \infty$, for $|\beta| \leq m$, so that $V \ast P$ is a C^∞-function and, by (12), $D^\alpha (V \ast P)(x) = O(\exp(M(b_2 x)))$ as $|x| \to \infty$, for all α.

Also $U \ast W = f \ast D^\beta W$, which shows, from (P2) and (11), that $U \ast W$ is a C^l-function and $D^\alpha (U \ast W)(x) = O(\exp(M(2b_1 x)))$ as $|x| \to \infty$, for all $|\alpha| \leq l$.

Consequently U is a C^l-function and

$$D^\alpha U(x) = O(\exp(M(2b_2 x))) + O(\exp(M(2b_1 x))) = O(\exp(M(bx)))$$

as $|x| \to \infty$, for all $|\alpha| \leq l$. But l was arbitrary and therefore U must be in $\mathcal{E}'\mathcal{K}'_e$.

From this theorem all that remains is to show that condition (14) implies the existence of such (b, k)-parametrices. In order to simplify the notation we present the proof of existence of such parametrices for $n = 1$. The general case can be handled in similar way although there are notational difficulties (see [6]).

The proof of existence and parametrices. We apply condition (h4) with ϵ and m to be fixed later. Suppose that (h4) holds for some given ϵ, m, $B > 0$ and $C_m \geq 1$. Then the function

$$F(x, \zeta) = \{2\pi \hat{S}(\xi, \zeta)^m \}^{-1} \exp(i(x, \zeta))$$

is analytic in ζ, when $\Omega(\eta) \leq m \log |\zeta|$ and $|\zeta| \geq C_m$, provided that C_m is sufficiently large. If $\mu > B/2 + 1$, then $F(x, \zeta)$ is integrable over $R - I$ where $I = \{x \in R: |x| \leq C_m\}$. Moreover, if μ is even and

$$h(x) = \int_{R - I} F(x, \xi) d\xi,$$

We use $M(x) + M(y) \leq M(x + y)$ and $M(x + y) \leq M(2x) + M(2y)$ for all $x, y \in \mathbb{R}^n$.

then the distribution $H = \Delta^\mu h$ satisfies the equation

$$S \ast H = \delta - \frac{1}{2\pi} \int_I \exp(i\alpha \xi) \, d\xi.$$

We now shift the integral (14) over a suitable contour in the complex plane.

Let $\sigma(t)$ be a C^∞-function defined for $t > 0$ in such a way that $\sigma(t) = C_m$ for $0 < t \leq C_m$, increases for $t \geq C_m$ and $\sigma(t) = \exp(aM_1(bt))$ for $t \geq 2C_m$ where a is a sufficiently small positive constant which we will specify later and $M_1(t) = t(e^t - t - 1)$, and $\sigma(t)$ can be extended to the negative values of t by setting $\sigma(t) = -\sigma(-t)$ for $t < 0$.

Furthermore, let $\tau(t)$ be an even C^∞-function on \mathbb{R} such that $\tau(t) = 0$ for $|t| \leq C_m$, increases for $|t| \geq C_m$, and $\tau(t) = b^2\mu(bt)$ for $|t| \geq 2C_m$, where c is the same positive constant as in $\sigma(t)$.

We can choose a positive integer m depending on b and a such that

$$\Omega(\tau(t)) \leq m \log |\sigma(t)|$$

for $|t| \geq C_m$ and C_m sufficiently large.

Given any $x \in \mathbb{R}$ we denote by Γ the contour in the complex plane defined by $\zeta(t) = \sigma(t) + i \text{sgn}(x)\tau(t)$ where t runs from $-\infty$ to $-C_m$ and C_m to ∞. By (16) the contour Γ lies in the domain $\Omega(\eta) \leq m \log |\eta|$. If, in addition, $\mu > B + \varepsilon m + 1$, then we can write

$$h(x) = \int_{\Gamma} F(x, \zeta) \, d\zeta.$$

In fact, $F(x, \zeta)$ is an analytic function in the domain $\Omega(\eta) \leq m \log |\eta|$ and, by (16), we obtain

$$\frac{1}{2\pi} \int_0^{\tau(t)} \frac{\exp(i\alpha(\sigma(t) + i \text{sgn}(x)\eta))}{S(\sigma(t) + i \text{sgn}(x)\eta) |\sigma(t) + i \text{sgn}(x)\eta|^{2\mu}} \, d\eta$$

$$\leq \frac{1}{2\pi} \exp(\Omega(\varepsilon \tau(t))) \int_0^{\tau(t)} |\sigma(t) + i\eta|^{B-2\mu} \exp(-|x|\eta) \, d\eta$$

$$\leq \frac{1}{2\pi} \exp(\varepsilon \Omega(\tau(t))) \sigma(t)^{B-2\mu+2} \int_0^{\tau(t)} |\sigma(t) + i\eta|^{-2} \exp(-|x|\eta) \, d\eta$$

$$\leq C \exp(\varepsilon m + B - 2\mu + 2aM_1(bt)) \to 0$$

as $t \to \infty$, provided that $\mu > B + \varepsilon m + 1$. Thus our claim follows from the Cauchy integral formula.

We denote by Γ_0 the part of contour Γ obtained by restricting the values of the parameter t to the open interval $(-|x|, |x|)$ and by Γ_1 the remaining portion of Γ.

If $h_1(x) = \int_{\Gamma_1} F(x, \zeta) \, d\zeta$ and $P = \Delta^\mu h_1$, then, by (15) and (17), we have

$$S \ast P = \delta - W$$

where

$$W = S \ast \Delta^\mu h_2 + \frac{1}{2\pi} \int_I \exp(i\alpha \xi) \, d\xi$$

and

$$h_2(x) = \int_{\Gamma_0} F(x, \zeta) \, d\zeta.$$

The proof of the existence of parametrices follows immediately from the next two lemmas.
LEMMA 2. The function \(h_1 \) satisfies the growth condition

\[
(19) \quad h_1(x) = O(\exp(-M(bx)))
\]
as \(|x| \to \infty \).

PROOF. Consider the integral

\[
\int_{\Gamma_1} F(x, \zeta) d\zeta = \int_{|t| \geq |x|} F(x, \zeta(t)) \zeta'(t) dt.
\]

For sufficiently large \(|t| \), we have

\[
|\zeta(t)|^2 \geq \sigma(t)^2 + \tau(t)^2 \geq \sigma(t)^2 \geq \exp(2\mu M_1(bt))
\]
and

\[
|\zeta'(t)| = \sqrt{(b\mu(bt) \exp(\alpha M_1(bt)))^2 + (b\mu(bt))^2} \geq C \exp(2\alpha M_1(bt))
\]
for some constant \(C \) and for sufficiently large \(|t| \).

Also, from (h4) and (16), it follows that

\[
|\tilde{S}(\zeta)|^{-1} \leq |\zeta(t)| \leq \exp(\varepsilon \tau(t)) \leq |\zeta(t)|^2 \leq \exp(\varepsilon \alpha M_1(bt)) \leq \exp((2\sigma(t))^2 \exp(\varepsilon \alpha M_1(bt)) \leq C \exp\left((\varepsilon \alpha M_1(bt))\right),
\]
provided that \(|t| \) is sufficiently large.

Further, if \(|t| \geq |x| \), from Young's inequality we have

\[
|\exp(ix\zeta(t))| = \exp(-|x|\tau(t)) = \exp(-b^2|x|^2 \mu(bx)) \leq \exp(-bM(bx)).
\]

Consequently, for \(|t| \) sufficiently large and greater than \(|x| \),

\[
|h_1(x)| \leq \frac{1}{2\pi} \int_{|t| \geq |x|} \frac{|\exp(ix\zeta(t))||\zeta'(t)|}{|\tilde{S}(\zeta(t))||\zeta(t)|^{2\mu}} \ dt
\]

\[
\leq C \exp(-bM(bx)) \int_{|t| \geq |x|} \exp((\varepsilon m + B - 2\mu + 2)\alpha M_1(bt)) \ dt
\]

\[
\leq C \exp(-bM(bx))
\]

for some constant \(C \), provided that \(\mu > \varepsilon m + B + 1 \).

This is the desired estimate for \(h_1(x) \).

LEMMA 3. For any given pair \((b, k)\) we can choose the constants \(\varepsilon, a \) (sufficiently small) and \(m \) (sufficiently large) so that

\[
(20) \quad D^\alpha W(x) = O(\exp(-M(bx))) \quad \text{as} \quad |x| \to \infty
\]

for all \(|\alpha| \leq k \).

PROOF. Assume that \(|x| \to \infty \) through \(x \geq 0 \); otherwise we could modify our argument.
By definition

\[D^\alpha W = S \ast D^\alpha \Delta^\mu h_2 + \frac{1}{2\pi} D^\alpha \int \exp(iz\xi) d\xi \]

where

\[h_2(x) = \frac{1}{2\pi} \int_{|x|} \frac{\exp(ixz(t))\zeta'(t)}{S(|z(t)|)\zeta(t)|^2\mu} dt. \]

It is easy to verify that \(h_2 \) is a \(C^\infty \)-function such that \(h_2(x) = 0 \) for \(|x| \leq C_m \) and

\[D^\alpha h_2(x) = O(\exp(a(|\alpha| + 1)))M_1(bx)) \quad \text{as} \quad |x| \to \infty \]

for all \(\alpha \).

On the other hand, by the structure theorem of distributions in \(\mathcal{K}'_\rho \), for every positive integer \(p \) there is an integer \(l \geq 0 \) such that \(S = \sum_{|\beta| \leq l} D^\beta f_\beta \) where \(f_\beta, |\beta| \leq l \), are continuous functions in \(\mathbb{R} \) satisfying the growth condition

\[f_\beta(x) = O(\exp(-M(px))) \quad \text{as} \quad |x| \to \infty. \]

Therefore, if we choose \(\rho \geq 4b \) and \(a \) so small that \((2\mu + k + l + 1)a < \rho/4b \), we can write

\[S \ast D^\alpha \Delta^\mu h_2 = \sum_{|\beta| \leq l} (-1)^{|\alpha + \beta|} \int_{-\infty}^{\infty} f_\beta(y)D^\alpha Y^\alpha + \beta \Delta^\mu Y h_2(x - y) dy \]

where \(|\alpha| \leq k \).

To estimate (24) we decompose \(h_2(x-y) \) as follows; \(h_2(x-y) = g_1(x,y) + g_2(x,y) \) and

\[g_1(x,y) = \int_{|t| \leq |x|} F(x-y,\zeta(t))\zeta'(t) dt \]

where \(\zeta(t) = \sigma(t) + isgn(x-y)\tau(t) \). Using the Cauchy integral theorem the contribution of \(g_1(x,y) \) toward the right-hand side of (24) is

\[\frac{1}{2\pi} D^\alpha \int_{\Gamma_0} \exp(iz\zeta) d\zeta + \sum_{|\beta| \geq l} (-1)^{|\alpha + \beta|} \int_{x}^{\infty} f_\beta(y)D^\alpha Y^\alpha + \beta \Delta^\mu Y \]

\[\times \int_{-\tau(|x|)}^{\tau(|x|)} \{F(x-y,\zeta_1(t))\zeta_1'(t) - F(x-y,\zeta_2(t))\zeta_2'(t)\} dt dy \]

where \(\zeta_1(t) = -\sigma(|x|) + it \) and \(\zeta_2(t) = \sigma(|x|) + it \).

For sufficiently large \(|x| \) each of the integrals in the second term of (25) can be estimated as follows. Given \(b > 0 \) we can choose \(\varepsilon \) and \(\rho \) so that \(\varepsilon b^2 < 1 \) and
\[\rho > b^2 + 1. \] Then
\[
\left| \int_{-\infty}^{\infty} f_\beta(y) D_y^{\alpha+\beta} \Delta^m_y \int_{-\tau(|x|)}^{\tau(|x|)} F(x - y, \zeta(t)) \zeta_1(t) \, dt \right|
\leq C \int_{x}^{\infty} \exp(-M(\rho y)) \int_{-\tau(|x|)}^{\tau(|x|)} e^{(y-x)t}(\sigma(|x|)^2 + t^2)^{(k+l+B+2)/2} \times \exp(\Omega(\epsilon t)) \frac{1}{\sigma(|x|)^2 + t^2} \, dt \, dy
\leq C \exp(-|x|\tau(|x|)) \sigma(|x|)^{k+l+B+2} \exp(\Omega(\epsilon \tau(|x|))) \times \int_{x}^{\infty} \exp(-M(\rho y) + y\tau(|x|)) \, dy
\leq C \exp\{-b^2|x|\mu(b|x|) + a(k + l + B + 2)M_1(bx) + \Omega(\mu(b|x|))\}
\times \sup_y \exp(-M(b^2 y) + b^2|y|\mu(b|x|))
\leq C \exp\{(-b + a(k + l + B + 2))b|x|\mu(b|x|) + 2\Omega(\mu(b|x|))\}
\leq C \exp(-2M(bx)) \exp\{(-(b - 2) + a(k + l + B + 2))b|x|\mu(b|x|)\}
\leq C \exp(-2M(bx)) \quad \text{as } |x| \to \infty,
\]
provided that \(a(k + l + B + 2) < b - 2 \). Similarly we can get the same estimation for the remaining part.

For the first term in (24), we can write
\[
(25) \quad D^\alpha \int_{\Gamma_0} e^{iz\xi} \, d\zeta = D^\alpha \int_{\Gamma_2} e^{iz\xi} \, d\zeta - D^\alpha \int_{I} e^{iz\xi} \, d\zeta
\]
where the curve \(\Gamma_2 \) is defined by \(\zeta(t) \) for \(C_m < |t| < |x| \) and \(t \) for \(-C_m \leq |t| \leq C_m \). Applying the Cauchy integral theorem with the curve \(\Gamma_3 \) defined by \(t + i\tau(|x|) \), we have
\[
\left| D^\alpha \int_{\Gamma_2} e^{iz\xi} \, d\zeta \right| = \left| D^\alpha \int_{\Gamma_3} e^{iz\xi} \, d\zeta \right|
\leq \int_{\sigma(|x|)}^{\tau(|x|)} \exp(-|x|\tau(|x|))(t^2 + \tau(|x|)^2)^{k/2} \, dt
\leq C \exp(-b^2|x|\mu(b|x|) + a(k + 2)M_1(bx))
\leq C \exp\{-b + a(k + 2))b|x|\mu(b|x|)\}
\leq C \exp(-M(bx)) \quad \text{as } |x| \to \infty.
\]
Therefore, combining all of these estimations we conclude that the contribution of \(g_1(x, y) \) in the right-hand side of (24) is
\[
O(\exp(-M(bx))) - D^\alpha \int_{I} \exp(iz\xi) \, d\xi \quad \text{as } |x| \to \infty.
\]
The latter term will be canceled with the second term of \(D^\alpha W \) in (21).

The proof of the lemma will be complete if we can choose \(\epsilon, a \) sufficiently small and \(m \) sufficiently large so that
\[
\left| \int_{-\infty}^{\infty} f_\beta(y) D_y^{\alpha+\beta} g_2(x, y) \, dy \right| = O(\exp(-M(bx))) \quad \text{as } |x| \to \infty,
\]
for all $|\alpha| \leq k$ and $|\beta| \leq l$. From the definition of $g_2(x, y)$ we only need to estimate $g_2(x, y)$ for $|x - y|$ sufficiently large and $|x - y| \geq |x|$. The contribution of $g_2(x, y)$ toward the right-hand side of (24) is

$$
(26) \quad \int_{-\infty}^{\infty} f_\beta(y) D_y^{\alpha+\beta} \int_{|x-y| \geq |t| \geq |x|} F(x - y, \zeta(t)) \varepsilon'(t) dt \, dy
$$

$$
= \int_{-\infty}^{\infty} f_\beta(y) D_y^{\alpha+\beta} \int F(x - y, \zeta_1(t)) \varepsilon_1'(t) dt \, dy
$$

$$
+ \int_{-\infty}^{\infty} f_\beta(y) D_y^{\alpha+\beta} \int F(x - y, \zeta_2(t)) \varepsilon_2'(t) dt \, dy
$$

where $\zeta_1(t) = \sigma(t) - i\tau(t)$ and $\zeta_2(t) = \sigma(t) + i\tau(t)$. We now estimate the first term in the right side of (26) as before.

$$
\left| \int_{-\infty}^{\infty} f_\beta(y) D_y^{\alpha+\beta} \int F(x - y, \zeta_1(t)) \zeta_1'(t) dt \, dy \right|
$$

$$
\leq \int_{-\infty}^{\infty} |f_\beta(y)| \int_{|x-y| \geq |t| \geq |x|} \exp\{(x - y)\tau(t) + \Omega(\varepsilon\tau(t))\} \times |\zeta_1(t)|^{\alpha+\beta+B} |\zeta_1'(t)| dt \, dy
$$

$$
\leq C \exp\{-(b - 1) + a(b + l + B + 4)\} b|x| |\mu(b|x|)
$$

$$
\leq C \exp(-M(bx)) \quad \text{as } |x| \to \infty,
$$

provided that a is so small that $a(k + l + B + 4) \leq b - 2$. Similarly we have the same estimation for the second term in (26), which proves the lemma.

EXAMPLE 1. Consider the entire function $\hat{S}(\xi) = \exp(i\xi)$ in the complex plane. We can easily show that S is a hypoelliptic convolution operator in K'_e.

REMARK 1. When we switch the roles of $M(x)$ and $Q(x)$, we have the same inequality as (16) when $\sigma(t) = \exp(aM(bt))$. We have the same results in the space of distributions which "grow" no faster than $\exp(k|x| \log |k|x|)$ for some integer $k > 0$, i.e. we can get all dual results.

In the space K'_l, where "l" means logarithm, obtained by changing the roles of $M(x)$ and $Q(x)$ in above argument (see Remark 1), we have two examples of convolution operators in K'_l, one of which is hypoelliptic and the other is not.

EXAMPLE 2. Let us consider the entire function $\hat{S}(\xi) = e^{-\xi^2}$. For given $\varepsilon > 0$, taking $C_\varepsilon = \sup_{\eta^2 \geq \Omega(\varepsilon\eta)} \{e^{\eta^2}\}$ when $\Omega(\eta) = e^{|\eta|} - |\eta| - 1$, we have

$$
|\hat{S}(\xi)| = e^{-\xi^2 + \eta^2} \geq e^{\eta^2} \leq C_\varepsilon \exp(\Omega(\varepsilon\eta))
$$

and so S is in $O'_\varepsilon(K'_l, K'_l)$. But, from (h$_1$), it is not hypoelliptic.

On the other hand, the distribution T whose Fourier transform $\hat{T}(\xi) = 1 + e^{-\xi^2}$ is in $O'_\varepsilon(K'_l, K'_l)$ as S and it is hypoelliptic. Because, for given $\varepsilon > 0$ and m, taking C_m so large that $\xi^2 - C - m \log |\xi| \geq 2$, where $C = \sup_{\eta^2 \geq \Omega(\eta)} \eta^2$, if $\Omega(\eta) \leq m \log |\xi|$ and $|\xi| \geq C_m$, we have

$$
|\hat{T}(\xi)| = (1 + 2e^{-\xi^2 + \eta^2} \cos(2\xi\eta) + e^{2(-\xi^2 + \eta^2)})^{1/2}
$$

$$
\geq 1 - e^{-\xi^2 + \eta^2} \geq 1 - e^{-\xi^2 + C + \Omega(\eta)}
$$

$$
\geq 1 - e^{-\xi^2 + C + m \log |\xi|} \geq 1 - e^{-2}
$$

$$
\geq |\xi|^{-1} \exp(-\Omega(\varepsilon\eta))
$$
if \(\Omega(\eta) \leq m \log |\zeta| \) and \(|\zeta| \geq C_m \). That is, it satisfies (h₄).

REMARK 2. In [6], they showed that the necessary conditions and sufficient condition are equivalent in the space of distributions which grow no faster than \(\exp(k|x|^p) \), \(p > 1 \), for some integer \(k > 0 \). To show this equivalence they proved the same kind of result as the lemma in [3] using the homogeneity of \(|x|^p \). In our spaces we cannot prove the same equivalence which we expect.

REFERENCES

DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, SEOUL 120, KOREA