## Vector bundles on complex projective spaces and systems of partial differential equations. I

HTML articles powered by AMS MathViewer

- by Peter F. Stiller PDF
- Trans. Amer. Math. Soc.
**298**(1986), 537-548 Request permission

## Abstract:

This paper establishes and investigates a relationship between the space of solutions of a system of constant coefficient partial differential equations and the cohomology (${H^1}$ in particular) of an associated vector bundle/reflexive sheaf on complex projective space. Using results of Grothendieck and Shatz on vector bundles over projective one-space, the case of partial differential equations in two variables is completely analyzed. The final section applies results about vector bundles on higher-dimensional projective spaces to the case of three or more variables.## References

- Mei-Chu Chang,
*Stable rank $2$ bundles on $\textbf {P}^{3}$ with $c_{1}=0,$ $c_{2}=4,$ and $\alpha =1$*, Math. Z.**184**(1983), no. 3, 407–415. MR**716286**, DOI 10.1007/BF01163513 - Charles K. Chui and Ren Hong Wang,
*Multivariate spline spaces*, J. Math. Anal. Appl.**94**(1983), no. 1, 197–221. MR**701458**, DOI 10.1016/0022-247X(83)90014-8 - A. Grothendieck,
*Sur la classification des fibrés holomorphes sur la sphère de Riemann*, Amer. J. Math.**79**(1957), 121–138 (French). MR**87176**, DOI 10.2307/2372388 - Robin Hartshorne,
*On the classification of algebraic space curves*, Vector bundles and differential equations (Proc. Conf., Nice, 1979), Progr. Math., vol. 7, Birkhäuser, Boston, Mass., 1980, pp. 83–112. MR**589222** - Christian Okonek, Michael Schneider, and Heinz Spindler,
*Vector bundles on complex projective spaces*, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR**561910** - Stephen S. Shatz,
*On subbundles of vector bundles over $\textbf {P}^{1}$*, J. Pure Appl. Algebra**10**(1977/78), no. 3, 315–322. MR**469920**, DOI 10.1016/0022-4049(77)90010-X - Peter F. Stiller,
*Certain reflexive sheaves on $\textbf {P}^{n}_{\textbf {C}}$ and a problem in approximation theory*, Trans. Amer. Math. Soc.**279**(1983), no. 1, 125–142. MR**704606**, DOI 10.1090/S0002-9947-1983-0704606-6
B. L. Van der Waerden, - Wolfgang Dahmen and Charles A. Micchelli,
*On the local linear independence of translates of a box spline*, Studia Math.**82**(1985), no. 3, 243–263. MR**825481**, DOI 10.4064/sm-82-3-243-263 - Wolfgang Dahmen and Charles A. Micchelli,
*On the optimal approximation rates for criss-cross finite element spaces*, J. Comput. Appl. Math.**10**(1984), no. 3, 255–273. MR**755803**, DOI 10.1016/0377-0427(84)90038-4
—, - Elias M. Stein and Guido Weiss,
*Introduction to Fourier analysis on Euclidean spaces*, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR**0304972** - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157**

*Algebra*, vol. 1, 7th ed., Ungar, New York, 1970.

*On the solutions of certain systems of partial difference equations and linear dependence of translates of box splines*, IBM Research Report, IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**298**(1986), 537-548 - MSC: Primary 14F05; Secondary 32C35, 35E99
- DOI: https://doi.org/10.1090/S0002-9947-1986-0860379-0
- MathSciNet review: 860379