Vector bundles on complex projective spaces and systems of partial differential equations. I
HTML articles powered by AMS MathViewer
- by Peter F. Stiller
- Trans. Amer. Math. Soc. 298 (1986), 537-548
- DOI: https://doi.org/10.1090/S0002-9947-1986-0860379-0
- PDF | Request permission
Abstract:
This paper establishes and investigates a relationship between the space of solutions of a system of constant coefficient partial differential equations and the cohomology (${H^1}$ in particular) of an associated vector bundle/reflexive sheaf on complex projective space. Using results of Grothendieck and Shatz on vector bundles over projective one-space, the case of partial differential equations in two variables is completely analyzed. The final section applies results about vector bundles on higher-dimensional projective spaces to the case of three or more variables.References
- Mei-Chu Chang, Stable rank $2$ bundles on $\textbf {P}^{3}$ with $c_{1}=0,$ $c_{2}=4,$ and $\alpha =1$, Math. Z. 184 (1983), no. 3, 407–415. MR 716286, DOI 10.1007/BF01163513
- Charles K. Chui and Ren Hong Wang, Multivariate spline spaces, J. Math. Anal. Appl. 94 (1983), no. 1, 197–221. MR 701458, DOI 10.1016/0022-247X(83)90014-8
- A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138 (French). MR 87176, DOI 10.2307/2372388
- Robin Hartshorne, On the classification of algebraic space curves, Vector bundles and differential equations (Proc. Conf., Nice, 1979), Progr. Math., vol. 7, Birkhäuser, Boston, Mass., 1980, pp. 83–112. MR 589222
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- Stephen S. Shatz, On subbundles of vector bundles over $\textbf {P}^{1}$, J. Pure Appl. Algebra 10 (1977/78), no. 3, 315–322. MR 469920, DOI 10.1016/0022-4049(77)90010-X
- Peter F. Stiller, Certain reflexive sheaves on $\textbf {P}^{n}_{\textbf {C}}$ and a problem in approximation theory, Trans. Amer. Math. Soc. 279 (1983), no. 1, 125–142. MR 704606, DOI 10.1090/S0002-9947-1983-0704606-6 B. L. Van der Waerden, Algebra, vol. 1, 7th ed., Ungar, New York, 1970.
- Wolfgang Dahmen and Charles A. Micchelli, On the local linear independence of translates of a box spline, Studia Math. 82 (1985), no. 3, 243–263. MR 825481, DOI 10.4064/sm-82-3-243-263
- Wolfgang Dahmen and Charles A. Micchelli, On the optimal approximation rates for criss-cross finite element spaces, J. Comput. Appl. Math. 10 (1984), no. 3, 255–273. MR 755803, DOI 10.1016/0377-0427(84)90038-4 —, On the solutions of certain systems of partial difference equations and linear dependence of translates of box splines, IBM Research Report, IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y.
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 298 (1986), 537-548
- MSC: Primary 14F05; Secondary 32C35, 35E99
- DOI: https://doi.org/10.1090/S0002-9947-1986-0860379-0
- MathSciNet review: 860379