The Euler characteristic as an obstruction to compact Lie group actions
HTML articles powered by AMS MathViewer
- by Volker Hauschild
- Trans. Amer. Math. Soc. 298 (1986), 549-578
- DOI: https://doi.org/10.1090/S0002-9947-1986-0860380-7
- PDF | Request permission
Abstract:
Actions of compact Lie groups on spaces $X$ with ${H^{\ast }}(X,{\mathbf {Q}}) \cong {\mathbf {Q}}[{x_1}, \ldots ,{x_n}]/{I_0}$, $Q \in {I_0}$ a definite quadratic form, $\deg {x_i} = 2$, are considered. It is shown that the existence of an effective action of a compact Lie group $G$ on such an $X$ implies $\chi (X) \equiv O(|WG|)$, where $\chi (X)$ is the Euler characteristic of $X$ and $|WG|$ means the order of the Weyl group of $G$. Moreover the diverse symmetry degrees of such spaces are estimated in terms of simple cohomological data. As an application it is shown that the symmetry degree ${N_t}(G/T)$ is equal to $\dim G$ if $G$ is a compact connected Lie group and $T \subset G$ its maximal torus. Effective actions of compact connected Lie groups $K$ on $G/T$ with $\dim K = \dim G$ are completely classified.References
- Armand Borel, Topics in the homology theory of fibre bundles, Lecture Notes in Mathematics, No. 36, Springer-Verlag, Berlin-New York, 1967. Lectures given at the University of Chicago, 1954; Notes by Edward Halpern. MR 0221507
- Tammo tom Dieck, Lokalisierung äquivarianter Kohomologie-Theorien, Math. Z. 121 (1971), 253–262 (German). MR 288756, DOI 10.1007/BF01111599 E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111-244. —, The maximal subgroups of the classical groups, Amer. Math. Soc. Transl. (2) 6 (1957), 245-378.
- John Friedlander and Stephen Halperin, Distinct representatives, varieties and rational homotopy, J. Number Theory 11 (1979), no. 3, S. Chowla Anniversary Issue, 321–323. MR 544260, DOI 10.1016/0022-314X(79)90005-2
- Stephen Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173–199. MR 461508, DOI 10.1090/S0002-9947-1977-0461508-8
- Akio Hattori and Tomoyoshi Yoshida, Lifting compact group actions in fiber bundles, Japan. J. Math. (N.S.) 2 (1976), no. 1, 13–25. MR 461538, DOI 10.4099/math1924.2.13
- Volker Hauschild, Compact Lie group actions with isotropy subgroups of maximal rank, Manuscripta Math. 34 (1981), no. 2-3, 355–379. MR 620457, DOI 10.1007/BF01165545 —, Deformationen graduierter artinscher Algebrèn in der Kohomologietheorie von Transformationsgruppen, Habilitationsschrift, Konstanz, 1984.
- Volker Hauschild, Actions of compact Lie groups on homogeneous spaces, Math. Z. 189 (1985), no. 4, 475–486. MR 786278, DOI 10.1007/BF01168154
- Kenji Hokama and Susumu Kôno, On the fixed point set of $S^{1}$-actions on the complex flag manifolds, Math. J. Okayama Univ. 20 (1978), no. 1, 1–16. MR 501043
- Wu-yi Hsiang, Cohomology theory of topological transformation groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85, Springer-Verlag, New York-Heidelberg, 1975. MR 0423384
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
- Volker Puppe, On a conjecture of Bredon, Manuscripta Math. 12 (1974), 11–16. MR 346778, DOI 10.1007/BF01166231
- Volker Puppe, Deformations of algebras and cohomology of fixed point sets, Manuscripta Math. 30 (1979/80), no. 2, 119–136. MR 553725, DOI 10.1007/BF01300965 P. Deligne, Ph. Griffiths, and J. Morgan, Real homotopy of Kähler manifolds, Invent. Math. 29 (1979), 245-274.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 298 (1986), 549-578
- MSC: Primary 57S25; Secondary 55P62, 57R91
- DOI: https://doi.org/10.1090/S0002-9947-1986-0860380-7
- MathSciNet review: 860380