The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations
HTML articles powered by AMS MathViewer
- by Emmanuel Nicholas Barron and Robert Jensen
- Trans. Amer. Math. Soc. 298 (1986), 635-641
- DOI: https://doi.org/10.1090/S0002-9947-1986-0860384-4
- PDF | Request permission
Abstract:
We prove the Pontryagin Maximum Principle for the Lagrange problem of optimal control using the fact that the value function of the problem is the viscosity solution of the associated Hamilton-Jacobi-Bellman equation. The proof here makes rigorous the formal proof of Pontryagin’s principle known for at least three decades.References
- L. D. Berkovitz, Optimal control theory, Applied Mathematical Sciences, Vol. 12, Springer-Verlag, New York-Heidelberg, 1974. MR 0372707
- Lamberto Cesari, Optimization—theory and applications, Applications of Mathematics (New York), vol. 17, Springer-Verlag, New York, 1983. Problems with ordinary differential equations. MR 688142, DOI 10.1007/978-1-4613-8165-5
- Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
- M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502. MR 732102, DOI 10.1090/S0002-9947-1984-0732102-X
- E. B. Lee and L. Markus, Foundations of optimal control theory, John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0220537
- Pierre-Louis Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667669 L. S. Pontryagin, et al., The mathematical theory of optimal processes, Interscience, New York, 1962.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 298 (1986), 635-641
- MSC: Primary 49C20; Secondary 35F20, 49B10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0860384-4
- MathSciNet review: 860384