Diffuse sequences and perfect $C^ \ast$-algebras
HTML articles powered by AMS MathViewer
- by Charles A. Akemann, Joel Anderson and Gert K. Pedersen
- Trans. Amer. Math. Soc. 298 (1986), 747-762
- DOI: https://doi.org/10.1090/S0002-9947-1986-0860391-1
- PDF | Request permission
Abstract:
The concept of a diffuse sequence in a ${C^{\ast }}$-algebra is introduced and exploited to complete the classification of separable, perfect ${C^{\ast }}$-algebras. A ${C^{\ast }}$-algebra is separable and perfect exactly when the closure of the pure state space consists entirely of atomic states.References
- Charles A. Akemann, Joel Anderson, and Gert K. Pedersen, Excising states of $C^\ast$-algebras, Canad. J. Math. 38 (1986), no. 5, 1239–1260. MR 869724, DOI 10.4153/CJM-1986-063-7
- Charles A. Akemann and Gert K. Pedersen, Ideal perturbations of elements in $C^*$-algebras, Math. Scand. 41 (1977), no. 1, 117–139. MR 473848, DOI 10.7146/math.scand.a-11707
- Charles A. Akemann and Frederic W. Shultz, Perfect $C^\ast$-algebras, Mem. Amer. Math. Soc. 55 (1985), no. 326, xiii+117. MR 787540, DOI 10.1090/memo/0326
- Joel Anderson, Extreme points in sets of positive linear maps on ${\cal B}({\cal H})$, J. Functional Analysis 31 (1979), no. 2, 195–217. MR 525951, DOI 10.1016/0022-1236(79)90061-2
- R. J. Archbold, Extensions of states of $C^{\ast }$-algebras, J. London Math. Soc. (2) 21 (1980), no. 2, 351–354. MR 575394, DOI 10.1112/jlms/s2-21.2.351 —, On perfect ${C^{\ast }}$-algebras, Preprint.
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Edward G. Effros, Order ideals in a $C^{\ast }$-algebra and its dual, Duke Math. J. 30 (1963), 391–411. MR 151864
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006 —, $SA{W^{\ast }}$-algebras and corona ${C^{\ast }}$-algebras, contributions to non-commutative topology, J. Operator Theory (to appear).
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- Frederic W. Shultz, Pure states as a dual object for $C^{\ast }$-algebras, Comm. Math. Phys. 82 (1981/82), no. 4, 497–509. MR 641911, DOI 10.1007/BF01961237
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728, DOI 10.1007/978-1-4612-6188-9
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 298 (1986), 747-762
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0860391-1
- MathSciNet review: 860391