Univalent harmonic functions
HTML articles powered by AMS MathViewer
- by W. Hengartner and G. Schober
- Trans. Amer. Math. Soc. 299 (1987), 1-31
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869396-9
- PDF | Request permission
Abstract:
Several families of complex-valued, univalent, harmonic functions are studied from the point of view of geometric function theory. One class consists of mappings of a simply-connected domain onto an infinite horizontal strip with a normalization at the origin. Extreme points and support points are determined, as well as sharp estimates for Fourier coefficients and distortion theorems. Next, mappings in $\left | z \right | > 1$ are considered that leave infinity fixed. Some coefficient estimates, distortion theorems, and covering properties are obtained. For such mappings with real boundary values, many extremal problems are solved explicitly.References
- Gustave Choquet, Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2) 69 (1945), 156–165 (French). MR 16973
- J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25. MR 752388, DOI 10.5186/aasfm.1984.0905
- R. R. Hall, On an inequality of E. Heinz, J. Analyse Math. 42 (1982/83), 185–198. MR 729409, DOI 10.1007/BF02786878
- Erhard Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt. 1952 (1952), 51–56 (German). MR 54182
- Walter Hengartner and Glenn Schober, On Schlicht mappings to domains convex in one direction, Comment. Math. Helv. 45 (1970), 303–314. MR 277703, DOI 10.1007/BF02567334
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- Karl Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103–121 (German). MR 1512136, DOI 10.1007/BF01448091
- D. J. Hallenbeck and T. H. MacGregor, Support points of families of analytic functions described by subordination, Trans. Amer. Math. Soc. 278 (1983), no. 2, 523–546. MR 701509, DOI 10.1090/S0002-9947-1983-0701509-8
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 1-31
- MSC: Primary 30C45; Secondary 30C50, 31A05
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869396-9
- MathSciNet review: 869396