Concavity of solutions of the porous medium equation
HTML articles powered by AMS MathViewer
- by Philippe Bénilan and Juan Luis Vázquez
- Trans. Amer. Math. Soc. 299 (1987), 81-93
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869400-8
- PDF | Request permission
Abstract:
We consider the problem \[ \left ( {\text {P}} \right )\quad \quad \left \{ {\begin {array}{*{20}{c}} {{u_t} = {{({u^m})}_{xx}},} \\ {u(x,0) = {u_0}(x)} \\ \end {array} } \right .\quad \begin {array}{*{20}{c}} {{\text {with}} x \in {\mathbf {R}}, t > 0} \\ {{\text {for}} x \in {\mathbf {R}}} \\ \end {array} \] where $m > 1$ and ${u_0}$ is a continuous, nonnegative function that vanishes outside an interval $(a, b)$ and such that $(u_0^{m - 1})'' \leq - C \leq 0$ in $(a, b)$. Using a Trotter-Kato formula we show that the solution conserves the concavity in time: for every $t > 0, u(x,t)$ vanishes outside an interval $\Omega (t) = ({}_{\zeta 1}(t), {}_{\zeta 2}(t))$ and \[ {({u^{m - 1}})_{xx}} \leq - \frac {C} {{1 + C(m(m + 1)/(m - 1))t}}\] in $\Omega (t)$. Consequently the interfaces $x{ = _{\zeta i}}(t)$, $i = 1, 2$, are concave curves. These results also give precise information about the large time behavior of solutions and interfaces.References
- D. G. Aronson, Regularity properties of flows through porous media: The interface, Arch. Rational Mech. Anal. 37 (1970), 1–10. MR 255996, DOI 10.1007/BF00249496 D. C. Aronson and Ph. Benilan, Régularité des solutions de l’équation des milieux poreux dans ${{\mathbf {R}}^n}$, C. R. Acad. Sci. Paris 288 (1979), 103-105.
- Philippe Bénilan and Michael G. Crandall, The continuous dependence on $\varphi$ of solutions of $u_{t}-\Delta \varphi (u)=0$, Indiana Univ. Math. J. 30 (1981), no. 2, 161–177. MR 604277, DOI 10.1512/iumj.1981.30.30014 Ph. Bénilan, M. G. Crandall and A. Pazy, Evolution equations governed by accretive operators (to appear).
- Stanley H. Benton Jr., The Hamilton-Jacobi equation, Mathematics in Science and Engineering, Vol. 131, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. A global approach. MR 0442431
- Luis A. Caffarelli and Avner Friedman, Regularity of the free boundary for the one-dimensional flow of gas in a porous medium, Amer. J. Math. 101 (1979), no. 6, 1193–1218. MR 548877, DOI 10.2307/2374136
- Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
- J. L. Graveleau and P. Jamet, A finite difference approach to some degenerate nonlinear parabolic equations, SIAM J. Appl. Math. 20 (1971), 199–223. MR 290600, DOI 10.1137/0120027
- Barry F. Knerr, The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), no. 2, 381–415. MR 492856, DOI 10.1090/S0002-9947-1977-0492856-3 O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and quasilinear equation of parabolic type, Transl. Math. Monos., vol. 23, Amer. Math. Soc., Providence, R.I., 1969.
- Pierre-Louis Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667669
- Maura Ughi, A degenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. Pura Appl. (4) 143 (1986), 385–400. MR 859613, DOI 10.1007/BF01769226
- Juan Luis Vázquez, Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), no. 2, 507–527. MR 694373, DOI 10.1090/S0002-9947-1983-0694373-7
- Juan L. Vázquez, The interfaces of one-dimensional flows in porous media, Trans. Amer. Math. Soc. 285 (1984), no. 2, 717–737. MR 752500, DOI 10.1090/S0002-9947-1984-0752500-8
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 81-93
- MSC: Primary 35K60; Secondary 76S05
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869400-8
- MathSciNet review: 869400