Persistence of form and the value group of reducible cubics
HTML articles powered by AMS MathViewer
- by P. D. T. A. Elliott
- Trans. Amer. Math. Soc. 299 (1987), 133-143
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869403-3
- PDF | Request permission
Abstract:
It is proved that the values of $x({x^2} + c)$, $c \ne 0$, at positive integers, multiplicatively generate the positive rationals. Analogs in rational function fields are obtained.References
- D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106–112. MR 93504, DOI 10.1112/S0025579300001157
- D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179–192. MR 132732, DOI 10.1112/plms/s3-12.1.179
- D. A. Burgess, Dirichlet characters and polynomials, Proceedings of the International Conference Number Theory (Moscow, 1971), 1973, pp. 203–205, 266 (English, with Russian summary). MR 0401673
- P. D. T. A. Elliott, Arithmetic functions and integer products, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 272, Springer-Verlag, New York, 1985. MR 766558, DOI 10.1007/978-1-4613-8548-6
- P. D. T. A. Elliott, The value distribution of reducible cubics, Canad. Math. Bull. 28 (1985), no. 3, 328–336. MR 790954, DOI 10.4153/CMB-1985-039-8
- P. D. T. A. Elliott, On representing integers as products of integers of a prescribed type, J. Austral. Math. Soc. Ser. A 35 (1983), no. 2, 143–161. MR 704421
- P. D. T. A. Elliott, On the mean value of $f(p)$, Proc. London Math. Soc. (3) 21 (1970), 28–96. MR 266881, DOI 10.1112/plms/s3-21.1.28
- R. C. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge-New York, 1981. MR 628618
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 133-143
- MSC: Primary 11N60; Secondary 11D85, 11K65
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869403-3
- MathSciNet review: 869403