## Construction of group actions on four-manifolds

HTML articles powered by AMS MathViewer

- by Allan L. Edmonds PDF
- Trans. Amer. Math. Soc.
**299**(1987), 155-170 Request permission

## Abstract:

It is shown that any cyclic group of odd prime order acts on any closed, simply connected topological $4$-manifold, inducing the identity on integral homology. The action is locally linear except perhaps at one isolated fixed point. In the case of primes greater than three a more careful argument is used to show that the action can be constructed to be locally linear.## References

- Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144** - Sylvain E. Cappell and Julius L. Shaneson,
*The codimension two placement problem and homology equivalent manifolds*, Ann. of Math. (2)**99**(1974), 277–348. MR**339216**, DOI 10.2307/1970901
L. Edmonds, - Michael Hartley Freedman,
*The topology of four-dimensional manifolds*, J. Differential Geometry**17**(1982), no. 3, 357–453. MR**679066** - Michael H. Freedman,
*The disk theorem for four-dimensional manifolds*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 647–663. MR**804721** - Marvin J. Greenberg and John R. Harper,
*Algebraic topology*, Mathematics Lecture Note Series, vol. 58, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1981. A first course. MR**643101** - F. Hirzebruch, W. D. Neumann, and S. S. Koh,
*Differentiable manifolds and quadratic forms*, Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau. MR**0341499**
Hirzebruch and D. Zagier, - W. C. Hsiang and R. H. Szczarba,
*On embedding surfaces in four-manifolds*, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 97–103. MR**0339239** - Sławomir Kwasik,
*On the symmetries of the fake $\textbf {C}\textrm {P}^2$*, Math. Ann.**274**(1986), no. 3, 385–389. MR**842620**, DOI 10.1007/BF01457223 - Sławomir Kwasik and Pierre Vogel,
*Asymmetric four-dimensional manifolds*, Duke Math. J.**53**(1986), no. 3, 759–764. MR**860670**, DOI 10.1215/S0012-7094-86-05341-X
—, - John Milnor,
*A duality theorem for Reidemeister torsion*, Ann. of Math. (2)**76**(1962), 137–147. MR**141115**, DOI 10.2307/1970268 - J. Milnor,
*Whitehead torsion*, Bull. Amer. Math. Soc.**72**(1966), 358–426. MR**196736**, DOI 10.1090/S0002-9904-1966-11484-2 - Laurence R. Taylor,
*Relative Rochlin invariants*, Topology Appl.**18**(1984), no. 2-3, 259–280. MR**769295**, DOI 10.1016/0166-8641(84)90014-2 - C. T. C. Wall,
*Surgery on compact manifolds*, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR**0431216** - Steven H. Weintraub,
*Semi-free $Z_{p}$-actions on highly-connected manifolds*, Math. Z.**145**(1975), no. 2, 163–185. MR**400268**, DOI 10.1007/BF01214781 - Steven H. Weintraub,
*Topological realization of equivariant intersection forms*, Pacific J. Math.**73**(1977), no. 1, 257–280. MR**494175**, DOI 10.2140/pjm.1977.73.257

*Preliminary notes on finite group actions on four-manifolds*, unpublished notes, 1984.

*The Atiyah-Singer index theorem and elementary number theory*, Publish or Perish, Boston, 1973.

*Non-locally smoothable topological symmetries of four manifolds*, Preprint, 1985.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**299**(1987), 155-170 - MSC: Primary 57N13; Secondary 57N15, 57S17, 57S25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869405-7
- MathSciNet review: 869405