## Countably generated Douglas algebras

HTML articles powered by AMS MathViewer

- by Keiji Izuchi PDF
- Trans. Amer. Math. Soc.
**299**(1987), 171-192 Request permission

## Abstract:

Under a certain assumption of $f$ and $g$ in ${L^\infty }$ which is considered by Sarason, a strong separation theorem is proved. This is available to study a Douglas algebra $[{H^\infty }, f]$ generated by ${H^\infty }$ and $f$. It is proved that (1) ball$(B/{H^\infty } + C)$ does not have exposed points for every Douglas algebra $B$, (2) Sarasonβs three functions problem is solved affirmatively, (3) some characterization of $f$ for which $[{H^\infty }, f]$ is singly generated, and (4) the $M$-ideal conjecture for Douglas algebras is not true.## References

- Sheldon Axler,
*Factorization of $L^{\infty }$ functions*, Ann. of Math. (2)**106**(1977), no.Β 3, 567β572. MR**461142**, DOI 10.2307/1971067 - Sheldon Axler, I. David Berg, Nicholas Jewell, and Allen Shields,
*Approximation by compact operators and the space $H^{\infty }+C$*, Ann. of Math. (2)**109**(1979), no.Β 3, 601β612. MR**534765**, DOI 10.2307/1971228 - Sun Yung A. Chang,
*A characterization of Douglas subalgebras*, Acta Math.**137**(1976), no.Β 2, 82β89. MR**428044**, DOI 10.1007/BF02392413 - Theodore W. Gamelin,
*Uniform algebras*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR**0410387** - T. W. Gamelin, D. E. Marshall, R. Younis, and W. R. Zame,
*Function theory and $M$-ideals*, Ark. Mat.**23**(1985), no.Β 2, 261β279. MR**827346**, DOI 10.1007/BF02384429 - John B. Garnett,
*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971**
P. Gorkin, - Pamela Gorkin,
*Decompositions of the maximal ideal space of $L^{\infty }$*, Trans. Amer. Math. Soc.**282**(1984), no.Β 1, 33β44. MR**728701**, DOI 10.1090/S0002-9947-1984-0728701-1 - Carroll Guillory, Keiji Izuchi, and Donald Sarason,
*Interpolating Blaschke products and division in Douglas algebras*, Proc. Roy. Irish Acad. Sect. A**84**(1984), no.Β 1, 1β7. MR**771641** - Kenneth Hoffman,
*Banach spaces of analytic functions*, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0133008**
β, unpublished note.
- Keiji Izuchi,
*Zero sets of interpolating Blaschke products*, Pacific J. Math.**119**(1985), no.Β 2, 337β342. MR**803123** - Keiji Izuchi,
*$QC$-level sets and quotients of Douglas algebras*, J. Funct. Anal.**65**(1986), no.Β 3, 293β308. MR**826428**, DOI 10.1016/0022-1236(86)90020-0 - Keiji Izuchi,
*A geometrical characterization of singly generated Douglas algebras*, Proc. Amer. Math. Soc.**97**(1986), no.Β 3, 410β412. MR**840620**, DOI 10.1090/S0002-9939-1986-0840620-6 - Keiji Izuchi and Yuko Izuchi,
*Extreme and exposed points in quotients of Douglas algebras by $H^\infty$ or $H^\infty +C$*, Yokohama Math. J.**32**(1984), no.Β 1-2, 45β54. MR**772904** - Keiji Izuchi and Yuko Izuchi,
*Annihilating measures for Douglas algebras*, Yokohama Math. J.**32**(1984), no.Β 1-2, 135β151. MR**772911** - Daniel H. Luecking,
*The compact Hankel operators form an $M$-ideal in the space of Hankel operators*, Proc. Amer. Math. Soc.**79**(1980), no.Β 2, 222β224. MR**565343**, DOI 10.1090/S0002-9939-1980-0565343-7 - Daniel H. Luecking and Rahman M. Younis,
*Quotients of $L^{\infty }$ by Douglas algebras and best approximation*, Trans. Amer. Math. Soc.**276**(1983), no.Β 2, 699β706. MR**688971**, DOI 10.1090/S0002-9947-1983-0688971-4 - Sun Yung A. Chang,
*A characterization of Douglas subalgebras*, Acta Math.**137**(1976), no.Β 2, 82β89. MR**428044**, DOI 10.1007/BF02392413 - Donald Sarason,
*Functions of vanishing mean oscillation*, Trans. Amer. Math. Soc.**207**(1975), 391β405. MR**377518**, DOI 10.1090/S0002-9947-1975-0377518-3 - Donald Sarason,
*Function theory on the unit circle*, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19β23, 1978. MR**521811** - Donald Sarason,
*The Shilov and Bishop decompositions of $H^{\infty }+C$*, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp.Β 461β474. MR**730085** - Thomas H. Wolff,
*Two algebras of bounded functions*, Duke Math. J.**49**(1982), no.Β 2, 321β328. MR**659943** - Rahman Younis,
*Division in Douglas algebras and some applications*, Arch. Math. (Basel)**45**(1985), no.Β 6, 555β560. MR**818297**, DOI 10.1007/BF01194897

*Decompositions of the maximal ideal space of*${L^\infty }$, Thesis, Michigan State Univ., East Lansing, 1982.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**299**(1987), 171-192 - MSC: Primary 46J15; Secondary 30D55, 30H05
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869406-9
- MathSciNet review: 869406