Countably generated Douglas algebras
HTML articles powered by AMS MathViewer
- by Keiji Izuchi
- Trans. Amer. Math. Soc. 299 (1987), 171-192
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869406-9
- PDF | Request permission
Abstract:
Under a certain assumption of $f$ and $g$ in ${L^\infty }$ which is considered by Sarason, a strong separation theorem is proved. This is available to study a Douglas algebra $[{H^\infty }, f]$ generated by ${H^\infty }$ and $f$. It is proved that (1) ball$(B/{H^\infty } + C)$ does not have exposed points for every Douglas algebra $B$, (2) Sarasonβs three functions problem is solved affirmatively, (3) some characterization of $f$ for which $[{H^\infty }, f]$ is singly generated, and (4) the $M$-ideal conjecture for Douglas algebras is not true.References
- Sheldon Axler, Factorization of $L^{\infty }$ functions, Ann. of Math. (2) 106 (1977), no.Β 3, 567β572. MR 461142, DOI 10.2307/1971067
- Sheldon Axler, I. David Berg, Nicholas Jewell, and Allen Shields, Approximation by compact operators and the space $H^{\infty }+C$, Ann. of Math. (2) 109 (1979), no.Β 3, 601β612. MR 534765, DOI 10.2307/1971228
- Sun Yung A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), no.Β 2, 82β89. MR 428044, DOI 10.1007/BF02392413
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- T. W. Gamelin, D. E. Marshall, R. Younis, and W. R. Zame, Function theory and $M$-ideals, Ark. Mat. 23 (1985), no.Β 2, 261β279. MR 827346, DOI 10.1007/BF02384429
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971 P. Gorkin, Decompositions of the maximal ideal space of ${L^\infty }$, Thesis, Michigan State Univ., East Lansing, 1982.
- Pamela Gorkin, Decompositions of the maximal ideal space of $L^{\infty }$, Trans. Amer. Math. Soc. 282 (1984), no.Β 1, 33β44. MR 728701, DOI 10.1090/S0002-9947-1984-0728701-1
- Carroll Guillory, Keiji Izuchi, and Donald Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84 (1984), no.Β 1, 1β7. MR 771641
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008 β, unpublished note.
- Keiji Izuchi, Zero sets of interpolating Blaschke products, Pacific J. Math. 119 (1985), no.Β 2, 337β342. MR 803123
- Keiji Izuchi, $QC$-level sets and quotients of Douglas algebras, J. Funct. Anal. 65 (1986), no.Β 3, 293β308. MR 826428, DOI 10.1016/0022-1236(86)90020-0
- Keiji Izuchi, A geometrical characterization of singly generated Douglas algebras, Proc. Amer. Math. Soc. 97 (1986), no.Β 3, 410β412. MR 840620, DOI 10.1090/S0002-9939-1986-0840620-6
- Keiji Izuchi and Yuko Izuchi, Extreme and exposed points in quotients of Douglas algebras by $H^\infty$ or $H^\infty +C$, Yokohama Math. J. 32 (1984), no.Β 1-2, 45β54. MR 772904
- Keiji Izuchi and Yuko Izuchi, Annihilating measures for Douglas algebras, Yokohama Math. J. 32 (1984), no.Β 1-2, 135β151. MR 772911
- Daniel H. Luecking, The compact Hankel operators form an $M$-ideal in the space of Hankel operators, Proc. Amer. Math. Soc. 79 (1980), no.Β 2, 222β224. MR 565343, DOI 10.1090/S0002-9939-1980-0565343-7
- Daniel H. Luecking and Rahman M. Younis, Quotients of $L^{\infty }$ by Douglas algebras and best approximation, Trans. Amer. Math. Soc. 276 (1983), no.Β 2, 699β706. MR 688971, DOI 10.1090/S0002-9947-1983-0688971-4
- Sun Yung A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), no.Β 2, 82β89. MR 428044, DOI 10.1007/BF02392413
- Donald Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391β405. MR 377518, DOI 10.1090/S0002-9947-1975-0377518-3
- Donald Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19β23, 1978. MR 521811
- Donald Sarason, The Shilov and Bishop decompositions of $H^{\infty }+C$, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp.Β 461β474. MR 730085
- Thomas H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), no.Β 2, 321β328. MR 659943
- Rahman Younis, Division in Douglas algebras and some applications, Arch. Math. (Basel) 45 (1985), no.Β 6, 555β560. MR 818297, DOI 10.1007/BF01194897
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 171-192
- MSC: Primary 46J15; Secondary 30D55, 30H05
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869406-9
- MathSciNet review: 869406