Category and group rings in homotopy theory
HTML articles powered by AMS MathViewer
- by William J. Ralph
- Trans. Amer. Math. Soc. 299 (1987), 205-223
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869408-2
- PDF | Request permission
Abstract:
It frequently arises in algebraic topology that a function $\beta :G \to H$, between two groups, is not a homomorphism. We show that in many standard situations $\beta$ induces a group homomorphism $\overline \beta :{\mathbf {Z}}(G)/{\mathcal {A}^d} \to H$, where ${\mathcal {A}^d}$ is a power of the augumentation ideal in the group ring ${\mathbf {Z}}(G)$. A typical example is $\beta :[X, Y] \to [{S^2}X, {S^2}Y]$ where $Y$ is some $H$-group, in which case $d$ can be taken to be $1 + {\text {cat}} X$.References
- Max Karoubi, $K$-theory, Grundlehren der Mathematischen Wissenschaften, Band 226, Springer-Verlag, Berlin-New York, 1978. An introduction. MR 0488029
- William J. Ralph, An extension of singular homology to Banach algebras, Pacific J. Math. 123 (1986), no. 2, 391–405. MR 840850
- James Stasheff, $H$-spaces from a homotopy point of view, Lecture Notes in Mathematics, Vol. 161, Springer-Verlag, Berlin-New York, 1970. MR 0270372
- Robert M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR 0385836
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 205-223
- MSC: Primary 55Q05; Secondary 55P50
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869408-2
- MathSciNet review: 869408