Growth properties of functions in Hardy fields
HTML articles powered by AMS MathViewer
- by Maxwell Rosenlicht
- Trans. Amer. Math. Soc. 299 (1987), 261-272
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869411-2
- PDF | Request permission
Abstract:
This paper continues the author’s earlier work on the notion of rank in a Hardy field. Further results are given on functions in Hardy fields of finite rank, including extensions of Hardy’s results on the rates of growth of his logarithmico-exponential functions.References
- Michael Boshernitzan, New “orders of infinity”, J. Analyse Math. 41 (1982), 130–167. MR 687948, DOI 10.1007/BF02803397
- Michael Boshernitzan, Hardy fields and existence of transexponential functions, Aequationes Math. 30 (1986), no. 2-3, 258–280. MR 843667, DOI 10.1007/BF02189932 G. H. Hardy, Orders of infinity, 2nd ed., Cambridge Univ. Press, London and New York, 1924. —, Properties of logarithmico-exponential functions, Proc. London Math. Soc. (2) 10 (1912), 54-90.
- Maxwell Rosenlicht, The rank of a Hardy field, Trans. Amer. Math. Soc. 280 (1983), no. 2, 659–671. MR 716843, DOI 10.1090/S0002-9947-1983-0716843-5
- Maxwell Rosenlicht, Rank change on adjoining real powers to Hardy fields, Trans. Amer. Math. Soc. 284 (1984), no. 2, 829–836. MR 743747, DOI 10.1090/S0002-9947-1984-0743747-5
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 261-272
- MSC: Primary 12H05; Secondary 26A12, 34E05, 41A60
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869411-2
- MathSciNet review: 869411