Best constants in norm inequalities for the difference operator
HTML articles powered by AMS MathViewer
 by Hans G. Kaper and Beth E. Spellman PDF
 Trans. Amer. Math. Soc. 299 (1987), 351372 Request permission
Abstract:
Let $\xi = {({\xi _m})_{m \in {\mathbf {Z}}}}$ be an arbitrary element of the sequence space ${l^\infty }({\mathbf {Z}})$, and let $\Delta$ be the difference operator on ${l^\infty }({\mathbf {Z}}):\Delta \xi = {({\xi _{m + 1}}  {\xi _m})_{m \in {\mathbf {Z}}}}$. The object of this investigation is the best possible value \[ C(n, k) = {\operatorname {sup}}\{ {Q_{n,k}}(\xi ):\xi \in {l^\infty }({\mathbf {Z}}), {\Delta ^n}\xi \ne 0\} \] of the quotient \[ {Q_{n,k}}(\xi ) = \frac {{\left \ {{\Delta ^k}\xi } \right \}} {{{{\left \ \xi \right \}^{(n  k)/n}}{{\left \ {{\Delta ^n}\xi } \right \}^{k/n}}}}\], where $n = 2,\:3, \ldots$; $k = 1, \ldots , n  1$. It is shown that $C(n, k)$ is at least equal to the corresponding constant $K(n, k)$, determined by Kolmogorov [Moscov. Gos. Univ. Uchen. Zap. Mat. 30 (1939), 313; Amer. Math. Soc. Transl. (1) 2 (1962), 233243] for the differential operator $D$ on ${L^\infty }({\mathbf {R}})$, and exactly equal to $K(n, k)$ if $k = n  1$. Lower bounds for $C(n, k)$ are derived that show that $C(n, k)$ is generally greater than $K(n, k)$. The values of $C(n, k)$, $k = 1, \ldots , n  1$, are computed for $n = 2, \ldots ,5$.References

J. Hadamard, Sur le module maximum d’une fonction et de ses dérivées, C. R. Acad. Sci. Paris Ser. A 42 (1914), 6872.
E. Landau, Einige Ungleichungen für zweimal differentiierbare Funktionen, Proc. London Math. Soc. 13 (1913), 4349.
G. E. Šilov, On inequalities between derivatives, Moskov. Gos. Univ. Sb. Rabot Stud. Nauchn. Kruzhkov (1937), 1727. (Russian)
A. N. Kolmogorov, Dokl. Akad. Nauk SSSR (N.S.) 15 (1937), 107112.
 A. Kolmogoroff, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Translation 1949 (1949), no. 4, 19. MR 0031009
 Yu. I. Lyubič, On the belonging of the powers of an operator on a given vector to a certain linear class, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 881–884 (Russian). MR 0071731
 Ju. I. Ljubič, On inequalities between powers of a linear operator, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 825–864 (Russian). MR 0130576
 Herbert A. Gindler and Jerome A. Goldstein, Dissipative operator versions of some classical inequalities, J. Analyse Math. 28 (1975), 213–238. MR 482361, DOI 10.1007/BF02786813
 Herbert A. Gindler and Jerome A. Goldstein, Dissipative operators and series inequalities, Bull. Austral. Math. Soc. 23 (1981), no. 3, 429–442. MR 625184, DOI 10.1017/S0004972700007309
 Z. Ditzian, Discrete and shift Kolmogorov type inequalities, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982/83), no. 34, 307–317. MR 688793, DOI 10.1017/S0308210500015997 Z. Ditzian and D. J. Newman, Discrete Kolmogorovtype inequalities, Preprint (1984).
 I. J. Schoenberg, Cardinal spline interpolation, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. MR 0420078
 Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, vol. 27, SpringerVerlag, New YorkBerlin, 1978. MR 507062
 Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
 Larry L. Schumaker, Spline functions: basic theory, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. MR 606200
Additional Information
 © Copyright 1987 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 299 (1987), 351372
 MSC: Primary 39A70; Secondary 47B39
 DOI: https://doi.org/10.1090/S00029947198708694161
 MathSciNet review: 869416