On embedding of group rings of residually torsion free nilpotent groups into skew fields
HTML articles powered by AMS MathViewer
- by A. Eizenbud and A. I. Lichtman
- Trans. Amer. Math. Soc. 299 (1987), 373-386
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869417-3
- PDF | Request permission
Abstract:
It is proven that the group ring of an amalgamated free product of residually torsion free nilpotent groups is a domain and can be embedded in a skew field. This is a generalization of J. Lewin’s theorem, proven for the case of free groups. Our proof is based on the study of the Malcev-Neumann power series ring $K\left \langle G \right \rangle$ of a residually torsion free nilpotent group $G$. It is shown that its subfield $D$, generated by the group ring $KG$, does not depend on the order of $G$ for many kinds of orders and the study of $D$ can be reduced in some sense to the case when $G$ is nilpotent.References
- Jacques Lewin, Fields of fractions for group algebras of free groups, Trans. Amer. Math. Soc. 192 (1974), 339–346. MR 338055, DOI 10.1090/S0002-9947-1974-0338055-4
- P. M. Cohn, On the free product of associative rings. III, J. Algebra 8 (1968), 376–383. MR 222118, DOI 10.1016/0021-8693(68)90066-5
- P. M. Cohn, The embedding of firs in skew fields, Proc. London Math. Soc. (3) 23 (1971), 193–213. MR 297814, DOI 10.1112/plms/s3-23.2.193
- Jacques Lewin and Tekla Lewin, An embedding of the group algebra of a torsion-free one-relator group in a field, J. Algebra 52 (1978), no. 1, 39–74. MR 485972, DOI 10.1016/0021-8693(78)90260-0
- P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, No. 2, Academic Press, London-New York, 1971. MR 0371938
- Peter Malcolmson, A prime matrix ideal yields a skew field, J. London Math. Soc. (2) 18 (1978), no. 2, 221–233. MR 509937, DOI 10.1112/jlms/s2-18.2.221
- A. I. Lichtman, On normal subgroups of multiplicative group of skew fields generated by a polycyclic-by-finite group, J. Algebra 78 (1982), no. 2, 548–577. MR 680374, DOI 10.1016/0021-8693(82)90095-3
- A. I. Lichtman, On linear groups over a field of fractions of a polycyclic group ring, Israel J. Math. 42 (1982), no. 4, 318–326. MR 682316, DOI 10.1007/BF02761413
- A. I. Lichtman, Matrix rings and linear groups over a field of fractions of enveloping algebras and group rings. I, J. Algebra 88 (1984), no. 1, 1–37. MR 741929, DOI 10.1016/0021-8693(84)90087-5
- A. I. Lichtman, On matrix rings and linear groups over fields of fractions of group rings and enveloping algebras. II, J. Algebra 90 (1984), no. 2, 516–527. MR 760026, DOI 10.1016/0021-8693(84)90187-X
- A. I. Lichtman, Free subgroups in linear groups over some skew fields, J. Algebra 105 (1987), no. 1, 1–28. MR 871744, DOI 10.1016/0021-8693(87)90177-3
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- A. I. Mal′cev, Generalized nilpotent algebras and their associated groups, Mat. Sbornik N.S. 25(67) (1949), 347–366 (Russian). MR 0032644 A. G. Kurosh, The theory of groups, Chelsea, New York, 1956.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 373-386
- MSC: Primary 16A27; Secondary 16A08, 16A39, 20C07
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869417-3
- MathSciNet review: 869417