$K$-theory and multipliers of stable $C^ \ast$-algebras
HTML articles powered by AMS MathViewer
- by J. A. Mingo
- Trans. Amer. Math. Soc. 299 (1987), 397-411
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869419-7
- PDF | Request permission
Abstract:
The main theorem is that if $A$ is a $C^{\ast }$-algebra with a countable approximate identity consisting of projections, then the unitary group of $M(A \otimes K)$ is contractible. This gives a realization, via the index map, of ${K_0}(A)$ as components in the set of Fredholm operators on ${H_A}$.References
- Huzihiro Araki, Mi-soo Bae Smith, and Larry Smith, On the homotopical significance of the type of von Neumann algebra factors, Comm. Math. Phys. 22 (1971), 71–88. MR 288587, DOI 10.1007/BF01651585
- M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083
- Bruce Blackadar and David Handelman, Dimension functions and traces on $C^{\ast }$-algebras, J. Functional Analysis 45 (1982), no. 3, 297–340. MR 650185, DOI 10.1016/0022-1236(82)90009-X
- M. Breuer, On the homotopy type of the group of regular elements of semifinite von Neumann algebras, Math. Ann. 185 (1970), 61–74. MR 264408, DOI 10.1007/BF01350761
- Jochen Brüning and Wolfgang Willgerodt, Eine Verallgemeinerung eines Satzes von N. Kuiper, Math. Ann. 220 (1976), no. 1, 47–58. MR 405483, DOI 10.1007/BF01354528
- Robert C. Busby, Double centralizers and extensions of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79–99. MR 225175, DOI 10.1090/S0002-9947-1968-0225175-5
- A. Connes, An analogue of the Thom isomorphism for crossed products of a $C^{\ast }$-algebra by an action of $\textbf {R}$, Adv. in Math. 39 (1981), no. 1, 31–55. MR 605351, DOI 10.1016/0001-8708(81)90056-6
- Edward G. Effros and E. Christopher Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34. MR 448092, DOI 10.1016/0001-8708(77)90085-8
- George A. Elliott, Derivations of matroid $C^{\ast }$-algebras. II, Ann. of Math. (2) 100 (1974), 407–422. MR 352999, DOI 10.2307/1971079
- K. R. Goodearl and D. E. Handelman, Stenosis in dimension groups and AF $C^{\ast }$-algebras, J. Reine Angew. Math. 332 (1982), 1–98. MR 656856, DOI 10.1515/crll.1982.332.1
- G. G. Kasparov, Hilbert $C^{\ast }$-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133–150. MR 587371
- G. G. Kasparov, The operator $K$-functor and extensions of $C^{\ast }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571–636, 719 (Russian). MR 582160
- Nicolaas H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30. MR 179792, DOI 10.1016/0040-9383(65)90067-4
- James A. Mingo, On the contractibility of the unitary group of the Hilbert space over a $C^{\ast }$-algebra, Integral Equations Operator Theory 5 (1982), no. 6, 888–891. MR 682305, DOI 10.1007/BF01694068
- A. S. Miščenko and A. T. Fomenko, The index of elliptic operators over $C^{\ast }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 4, 831–859, 967 (Russian). MR 548506
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- M. Pimsner, S. Popa, and D. Voiculescu, Homogeneous $C^{\ast }$-extensions of $C(X)\otimes K(H)$. I, J. Operator Theory 1 (1979), no. 1, 55–108. MR 526291
- Graeme Segal, Equivariant contractibility of the general linear group of Hilbert space, Bull. London Math. Soc. 1 (1969), 329–331. MR 248877, DOI 10.1112/blms/1.3.329
- J. L. Taylor, Banach algebras and topology, Algebras in analysis (Proc. Instructional Conf. and NATO Advanced Study Inst., Birmingham, 1973) Academic Press, London, 1975, pp. 118–186. MR 0417789
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 397-411
- MSC: Primary 46L80; Secondary 18F25, 19K56, 46M20
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869419-7
- MathSciNet review: 869419