## The dimension of closed sets in the Stone-Čech compactification

HTML articles powered by AMS MathViewer

- by James Keesling PDF
- Trans. Amer. Math. Soc.
**299**(1987), 413-428 Request permission

## Abstract:

In this paper properties of compacta $K$ in $\beta X\backslash X$ are studied for Lindelöf spaces $X$. If ${\operatorname {dim}} K = \infty$, then there is a mapping $f:K \to {T^c}$ such that $f$ is onto and every mapping homotopic to $f$ is onto. This implies that there is an essential family for $K$ consisting of $c$ disjoint pairs of closed sets. It also implies that if $K = \cup \left \{ {{K_\alpha }|\alpha < c} \right \}$ with each ${K_\alpha }$ closed, then there is a $\beta$ such that ${\operatorname {dim}} {K_\beta } = \infty$. Assume $K$ is a compactum in $\beta X\backslash X$ as above. Then if ${\operatorname {dim}} K = n$, there is a closed set $K’$ in $K$ such that ${\operatorname {dim}} K’ = n$ and such that every nonempty ${G_\delta }$-set in $K’$ contains an $n$-dimensional compactum. This holds for $n$ finite or infinite. If ${\operatorname {dim}} K = n$ and $K = \cup \left \{ {{K_\alpha }|\alpha < {\omega _1}} \right \}$ with each ${K_\alpha }$ closed, then there must be a $\beta$ such that ${\operatorname {dim}} {K_\beta } = n$.## References

- Allan Calder and Jerrold Siegel,
*Homotopy and uniform homotopy*, Trans. Amer. Math. Soc.**235**(1978), 245–270. MR**458416**, DOI 10.1090/S0002-9947-1978-0458416-6 - Allan Calder and Jerrold Siegel,
*Homotopy and uniform homotopy. II*, Proc. Amer. Math. Soc.**78**(1980), no. 2, 288–290. MR**550515**, DOI 10.1090/S0002-9939-1980-0550515-8 - Ryszard Engelking,
*Teoria wymiaru*, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR**0482696** - Leonard Gillman and Meyer Jerison,
*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199**, DOI 10.1007/978-1-4615-7819-2 - William E. Haver,
*Locally contractible spaces that are absolute neighborhood retracts*, Proc. Amer. Math. Soc.**40**(1973), 280–284. MR**331311**, DOI 10.1090/S0002-9939-1973-0331311-X - Witold Hurewicz and Henry Wallman,
*Dimension Theory*, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493** - J. R. Isbell,
*Uniform spaces*, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR**0170323**, DOI 10.1090/surv/012 - James Keesling,
*Shape theory and compact connected abelian topological groups*, Trans. Amer. Math. Soc.**194**(1974), 349–358. MR**345064**, DOI 10.1090/S0002-9947-1974-0345064-8 - James Keesling,
*Continuous functions induced by shape morphisms*, Proc. Amer. Math. Soc.**41**(1973), 315–320. MR**334141**, DOI 10.1090/S0002-9939-1973-0334141-8 - James Keesling,
*Decompositions of the Stone-Čech compactification which are shape equivalences*, Pacific J. Math.**75**(1978), no. 2, 455–466. MR**514986**, DOI 10.2140/pjm.1978.75.455 - James Keesling,
*The Stone-Čech compactification and shape dimension*, Topology Proc.**2**(1977), no. 2, 483–508 (1978). MR**540625** - James Keesling and R. B. Sher,
*Shape properties of the Stone-Čech compactification*, General Topology and Appl.**9**(1978), no. 1, 1–8. MR**478105**, DOI 10.1016/0016-660X(78)90037-5 - Sibe Mardešić and Jack Segal,
*Shape theory*, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR**676973** - Jun-iti Nagata,
*Modern dimension theory*, Bibliotheca Mathematica, Vol. VI, Interscience Publishers John Wiley & Sons, Inc., New York, 1965. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam. MR**0208571** - A. R. Pears,
*Dimension theory of general spaces*, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR**0394604** - Russell C. Walker,
*The Stone-Čech compactification*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974. MR**0380698**, DOI 10.1007/978-3-642-61935-9 - Alicia Browner Winslow,
*There are $2^{{\mathfrak {c}}}$ nonhomeomorphic continua in $\beta \textbf {R}^{n}-\textbf {R}^{n}$*, Pacific J. Math.**84**(1979), no. 1, 233–239. MR**559641**, DOI 10.2140/pjm.1979.84.233

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**299**(1987), 413-428 - MSC: Primary 54D35; Secondary 54D40, 54F45
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869420-3
- MathSciNet review: 869420