The dimension of closed sets in the Stone-Čech compactification
HTML articles powered by AMS MathViewer
- by James Keesling
- Trans. Amer. Math. Soc. 299 (1987), 413-428
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869420-3
- PDF | Request permission
Abstract:
In this paper properties of compacta $K$ in $\beta X\backslash X$ are studied for Lindelöf spaces $X$. If ${\operatorname {dim}} K = \infty$, then there is a mapping $f:K \to {T^c}$ such that $f$ is onto and every mapping homotopic to $f$ is onto. This implies that there is an essential family for $K$ consisting of $c$ disjoint pairs of closed sets. It also implies that if $K = \cup \left \{ {{K_\alpha }|\alpha < c} \right \}$ with each ${K_\alpha }$ closed, then there is a $\beta$ such that ${\operatorname {dim}} {K_\beta } = \infty$. Assume $K$ is a compactum in $\beta X\backslash X$ as above. Then if ${\operatorname {dim}} K = n$, there is a closed set $K’$ in $K$ such that ${\operatorname {dim}} K’ = n$ and such that every nonempty ${G_\delta }$-set in $K’$ contains an $n$-dimensional compactum. This holds for $n$ finite or infinite. If ${\operatorname {dim}} K = n$ and $K = \cup \left \{ {{K_\alpha }|\alpha < {\omega _1}} \right \}$ with each ${K_\alpha }$ closed, then there must be a $\beta$ such that ${\operatorname {dim}} {K_\beta } = n$.References
- Allan Calder and Jerrold Siegel, Homotopy and uniform homotopy, Trans. Amer. Math. Soc. 235 (1978), 245–270. MR 458416, DOI 10.1090/S0002-9947-1978-0458416-6
- Allan Calder and Jerrold Siegel, Homotopy and uniform homotopy. II, Proc. Amer. Math. Soc. 78 (1980), no. 2, 288–290. MR 550515, DOI 10.1090/S0002-9939-1980-0550515-8
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- William E. Haver, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), 280–284. MR 331311, DOI 10.1090/S0002-9939-1973-0331311-X
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323, DOI 10.1090/surv/012
- James Keesling, Shape theory and compact connected abelian topological groups, Trans. Amer. Math. Soc. 194 (1974), 349–358. MR 345064, DOI 10.1090/S0002-9947-1974-0345064-8
- James Keesling, Continuous functions induced by shape morphisms, Proc. Amer. Math. Soc. 41 (1973), 315–320. MR 334141, DOI 10.1090/S0002-9939-1973-0334141-8
- James Keesling, Decompositions of the Stone-Čech compactification which are shape equivalences, Pacific J. Math. 75 (1978), no. 2, 455–466. MR 514986, DOI 10.2140/pjm.1978.75.455
- James Keesling, The Stone-Čech compactification and shape dimension, Topology Proc. 2 (1977), no. 2, 483–508 (1978). MR 540625
- James Keesling and R. B. Sher, Shape properties of the Stone-Čech compactification, General Topology and Appl. 9 (1978), no. 1, 1–8. MR 478105, DOI 10.1016/0016-660X(78)90037-5
- Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973
- Jun-iti Nagata, Modern dimension theory, Bibliotheca Mathematica, Vol. VI, Interscience Publishers John Wiley & Sons, Inc., New York, 1965. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam. MR 0208571
- A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR 0394604
- Russell C. Walker, The Stone-Čech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974. MR 0380698, DOI 10.1007/978-3-642-61935-9
- Alicia Browner Winslow, There are $2^{{\mathfrak {c}}}$ nonhomeomorphic continua in $\beta \textbf {R}^{n}-\textbf {R}^{n}$, Pacific J. Math. 84 (1979), no. 1, 233–239. MR 559641, DOI 10.2140/pjm.1979.84.233
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 413-428
- MSC: Primary 54D35; Secondary 54D40, 54F45
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869420-3
- MathSciNet review: 869420