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THE VARIATION OF THE DE RHAM ZETA FUNCTION

STEVEN ROSENBERG

ABSTRACT. Special values of the zeta function j(s) for the Laplacian on

forms A on a compact Riemannian manifold are known to have geometric

significance. We compute the variation of these special values with respect to

the variation of the metric and write down the Euler-Lagrange equation for

conformai variations. The invariant metric on a locally symmetric space is

shown to be critical for every local Lagrangian. We also compute the variation

of ç'(0), or equivalently of det A. Finally, flat manifolds are characterized by

flatness at a point and a condition on the amplitudes of the eigenforms of A.

Introduction. In the past ten years, the study of the zeta function of an elliptic

operator on a compact Riemannian manifold has led to deep global results, such as a

proof of the Atiyah-Singer Index Theorem and the equality of Reidemeister torsion

and analytic torsion. In particular, when the operator is exterior differentiation on

the de Rham complex of bundle valued forms, then (up to some technicalities) the

alternating sum of c9(0), the zeta function on g-forms, gives the Euler characteristic,

and another linear combination of (çq)'(0) determines the Reidemeister torsion.

Nevertheless, for fixed q much remains to be known about c9(0) and (c9)'(0). For

example, although the linear combinations of c9(0) and (f?)'(0) mentioned above

are topological invariants, it has not been known how the individual terms depend

on the metric. The approach of this paper is to compute the variational equations

for Çq(0) and (f9)'(0) as functions on the space of metrics, and to then search for

critical metrics.

In more detail, in §1 we first compute the variation of c9(0) in the direction

of an arbitrary symmetric two tensor (Theorem 1.13). This extends results of

Ray and Singer [RS]. The Euler-Lagrange equation for conformai variations of

the metric is then written down in terms of the heat kernel asymptotics for the

Laplacians on forms (Proposition 1.15). We find that on an m dimensional manifold,

a metric is critical for conformai variations if and only if a certain (m — l)-form is

closed (Proposition 1.28). The Euler-Lagrange equations for arbitrary variations

can be also calculated by the same techniques. Although directly solving even the

conformai Euler-Lagrange equation seems very difficult, we can spot several classes

of metrics (e.g., flat metrics, any metric on a surface) that satisfy the full Euler-

Lagrange equations (Lemma 1.17). Using a theorem of Bleecker [Bl], we also prove

that the invariant metric on a compact locally symmetric space is critical for every

natural Lagrangian given by the integral of a local expression (Theorem 1.18). The

c9(0) are always given by such an expression, while (f9)'(0) is not. The findings of

this section indicate that c9(0) is rarely an invariant of any special class of metrics.
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The best result we know, due to Terng [T], is that çq (0) is an invariant of connected

sets of Einstein metrics on a four dimensional manifold. Mostow's Rigidity Theorem

precludes using Theorem 1.18 to produce a nontrivial family of metrics with c9(0)

as an invariant.

In §2 we begin by computing the variational formula for (c9)'(0) (Theorem 2.5).

The formula contains a nonlocal piece together with local terms, the variations of

f9(s) for certain integral values of s.

A similar formula for (çq)'(Q) itself is in Cheeger's work [C]. These local terms

regularize a formal expression, known to the physicists, for the variation of (f9)'(0).

This formal expression is in fact valid in dimension two, and we show that the only

critical metric for conformai variations of (çq)'(0) is the one of constant curvature

(Theorem 2.7). Above dimension two the Euler-Lagrange equation necessarily in-

volves the Green's function for the various Laplacians, so no local equation for

critical metrics can be found (Proposition 2.13).

We also investigate the interplay between formal and rigorous expressions for a

localized zeta function ç(s,x) for x on the manifold M. For example, if {</>«} is an

orthonormal basis of eigenfunctions of the Laplacian, then for all x, ^ |0„(i)|2,

the formal expression for f(0, x) diverges. However, if dim M is odd,

^(|<Mz)|2 - \<t>n(y)\2) = 0   for x, y G M,

whenever the sum exists (Theorem 2.11). This can be thought of as a generalization

of properties of the trigonometric polynomials. Moreover, flat manifolds can be

characterized by (i) ^(\4>n(x)\2 — |<^n(i/)|2) exists on 0-, 1-, and 2-forms and (ii)

flatness at one point.

The author began this research as a NATO Postdoctoral Fellow. During the

writing and revising of this paper, he received helpful suggestions from Professors

M. F. Atiyah, J. Cheeger, D. Fried, R. Palais, D. Quillen, and O L. Terng.

1. Let M be an oriented compact Riemannian manifold. In this section we

will study certain special values of zeta functions associated to the metric on M.

In particular, we will see how the special values vary as the metric is deformed.

Since the relevant values depend on whether M is even or odd dimensional, we will

assume that M is even dimensional and just indicate the necessary changes for odd

dimensional manifolds.

To begin, we will review the basic properties of the zeta function and geometric

significance of the special values. The metric p determines an inner product on

forms via the Hodge star operator *, and with respect to this inner product the

exterior derivative d has an adjoint 6 — ±*d*. The Laplacian on g-forms is given

by A9 = Aq = dê + êd. Let {A„} be the spectrum of A9, repeated with multiplicity.

The zeta function for (/-forms is defined to be

i"(s) = cq(s)=  £¿-

A„#0     "

for s G C. Note that Çq(s) = çm~q(s) on an m dimensional manifold, since *A =

A*.
The convergence of the zeta function and its analytic continuation are controlled

by the heat operator e~tA" on q-forms. This operator is trace class on the space
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of L2 g-forms with trace Tr(e  tA") = J2ne  An'-   The definition of the gamma

function then gives

(1.1)
1     r00

cq(s) = —        t'-iTrie-** - P*)dtt
L (s) Jo

where Pq is the projection of the L2 <j-forms onto the harmonic g-forms. Since

Tr(e-iA") is 0(i"m/2) as t [ 0 (see 1.2), the Mellin transform (1.1) shows that

Çq(s) is analytic for Re(s) > m/2. Conversely, starting with the zeta function,

one can recover first the trace of the heat operator (except for the harmonic forms

contribution) by an inverse Mellin transform. Fourier inversion then gives the

nonzero spectrum with multiplicity. Thus the zeta function encodes all the spectral

information of A9 except for the gth Betti number.

For the analytic continuation of f9(s), we first recall that the heat operator has

a smooth kernel eq(t,x,y) with an asymptotic expansion

(1.2) eq(t, x, y) = ̂ 1^/2    fe Ck(*< ^ + 0(tN)j     as t i °-

Here r(x,y) is the geodesic distance between nearby points x and y, m is the

dimension of M, N is an integer greater than m/2, and C^(x, y) is a (g, q)-double

form on M. For later purposes, we remark that the coefficients C/. are defined

inductively to be the unique solution of

(1 AC2_1(x,y) + Vr(d/dr)Cl(x,y) + [k + ¿g) Cq(x,y) = 0,

Cq_f(x,y)=0

where g is the determinant of the metric at y and all differentiations are in the

x variable [P]. The significance of the asymptotic expansion is that trCj¡.(x,x) is

explicitly computable from the curvature tensor and its covariant derivatives at x.

(Recall that the trace of a (g, ç)-double form a <8> ß(x,y) at x is a(x) A *ß(x).)

Writing the right side of (1.1) as fQ + /0°° and plugging

Trfe"'^) = /  Tre9(i,x,x)
^ ' JM

into the first integral, we get

A'

¿Vf trCq(x,x) + 0(tN)),        te (0,1),

f,(s) - (ï^rw ( 5 J+nh^2 /MtrC*M

R(s),

<fc=0

sT(s) + T(S)

where R(s) is analytic for Re(s) > —N - 1 and ßq is the qth Betti number.  (For

more details, see [RS].) Since T(s) has poles at the nonpositive integers with residue
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("I)

(1.5)

'(n!)-1 at -

çq(0) =

ç"(-k) =

rescq(k) =

(4tt)W2

(-l)fcfc!

(47T)
m/2

Jm

Í
Cm/2(XiX) ~ $î>

1

trCfc+m/2(X'X)

y.LtTCL'

kGZ+,

(x,x), kGZ, 0<k<
m

(47r)m/2(fc - 1)! JM " ~*-m/av~'-"        " - -' -  2

For odd dimensional manifolds, the relevant values of the zeta function would be

{k + i; k G Z and fc < ^ dimM}. Notice that c9(0) == -/3q in odd dimensions, so

in this case the zeta function encodes all of the spectrum of A9.

While the geometric expressions for JM tr C/. become overwhelmingly compli-

cated as A; increases (see e.g. [Gl]), the heat equation approach for the index of the

de Rham complex [ABP] easily gives

£(-i)V(fc) = o,      tez-,

E
Q

(-1)9 res c9(fc) = 0,        0 < k < m/2, kGZ.

For k = 0, it is a remarkable result of Patodi ([Pj; see also [MS] for m

the Euler form E is given pointwise by

(1-6) E(x) = j^ £(

2) that

(47r)m/2

By the Gauss-Bonnet Theorem,

D-i)v(o)

-l)qtrCqm/2(x,x).

f  E(x)-x(m) = 0.
JM

It appears to be difficult to understand how the individual terms trC^n,2(x,x)

contribute to the Euler form. What we can do is compute how the contribution of

the global term JM trC^/o to the Euler characteristic depends on the metric. The

local question will be discussed later (see (1.19)—(1.21)).

To calculate the variation of JM tr C1^ ,2 as a function of the metric, it is equiv-

alent by (1.5) to compute the variation of f9(0). The set of all metrics on M forms

an open cone within the vector space of symmetric two tensors, S2T*M, so the

tangent space to the metric p is S2T*M. Thus the variation ¿c9(0) in the direction

Pi G S2T*M is given by d/du\u=0cq+upi(0). (We hope the two uses of the symbol

6 will cause no confusion.) Since the zeta function depends smoothly upon the

metric at the regular values, we may write

d
KW

where Au = Ap+UOl

du u=0
>P+up »

5 = 0

r(
and Pq

1    r°
t6~l -r-

d

du
Tr(e-ÍA« - Pq)dt

i=0

Moreover, Ray and Singer show that

Pq+upi. By the Hodge Theorem, (d/du)Tr(Pq) = 0.

(1.7) i^-^
-t Tr(Aue -tAu
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for Âu = dAu/du. If we set * = d *u /du and a — *-1*, then it is easy to check

that À = óad - daè - add + dëa. Since Tr(AB) = Tï(BA) for A trace class and

B bounded,

Tr(6ade-tA") = Tr (e-tA"l2èade-tAq'2)

(L8) = Tr (ade^'ô) = Tr (adèe-tA"+i) .

Using similar manipulations for the other terms in Tr ( Ae~tA ), we get

(1.9)    6d(0) = --— /     t3 Tr ( -ad6e-tA"+l + a6de~
P r(s) Jo v

-tA"

+ aóde-tA"~1 - ad6e~tA") dt    at s = 0.

In (1.9) we have set u = 0 and dropped u as a subscript.

We claim that we can replace the integral in (1.9) by the same integral just

taken from zero to one. First of all, adêe~tA" has kernel ad6eq+1(t,x, y), where

adó acts on the x variable. If {f>n} is an orthonormal basis of L2 L2(q + l)-forms

consisting of eigenforms of A9+1 with eigenvalues {Xn}, then

eq+1(t,x,y) = ^VA"Vn(z) ® My)
n

in the C°° topology on M x M. By the Hodge Decomposition Theorem on (q + 1)-

forms, we may assume that each <pn is either harmonic, an eigenform of de, or an

eigenform of Sd. Since a acts fiberwise in the bundle of (q + l)-forms, it is easy to

check that Tr (ad6e~tAq+1) = O (E„e-A«') = 0(e~Xt), for {A'„} the eigenvalues

of db and À the first nonzero eigenvalue of A9+1. Thus the integral from one to

infinity in (1.9) is analytic for all s G C. Since l/r(s) is zero at s = 0, this

establishes the claim.

Thus we arrive at the formula, essentially due to Ray and Singer,

(1.10)

6cp(0) = -^- f  t'\[   tr(-adêeq+1(t,x,y) + a6deq(t,x,y)
1 \s) Jo      Um

+ a6deq~1 (t,x,y) - ad6eq(t,x,y)) dt    at s = 0.

The integral over M can be simplified by the following lemma.

LEMMA 1.11. Let w be a p-form in the variable x on a Riemannian manifold

of dimension m. Let r be the geodesic distance function and let all differentiations

be in the x variable.  Then

d6 (e--2(*.v)/4tw)

Sd (e-r2(*^/4tw)

P ,r
= — uj + dbu,

y—x        ¿I

-w + odu>.
\y=x 2í

PROOF.   Choose a normal coordinate system (x1,...,^"1) centered at y with

metric matrix (gij). Let V¿ = Vd/dxi be the covariant derivative in the x1 direction



540 STEVEN ROSENBERG

and let V* = glkVk (with summation convention). For f(x) = e~r (^-y)/4', we have

It is well known that in normal coordinates r2(x,y) = gikxlxk, so Vkf\x=y = 0.

Using gik = oik at x — y, we similarly see that V%Vkf\x=y = 0 if i ^ k and

—VfcVfc/|I=j/ = l/2i (no summation convention).

For ai = u¡kl...kpdxkl A • ■ • A dxkp, we have

(dw)kl...kp+1 = E(-l)"_1Vfe„wfei...fei/...fep+i
1/=1

(kv means kv is omitted) and

(M/ci-fep_i = -víw¿fe1...fcp„1

[de R, §26]. Thus at x = y,

((d8)fu)kl...kp = ¿(-l)"Vfc„V*(/W)ifci
u=l

¿(-i)^(v^wKfci
=i

¿(-^/V.J^..^
l/=l

¿>invfc^/)t%fci...^..,fcp+/^
i/=i

= -¿(vfc„vfe/Ht...fc,-i-<»w

= —u) + dboj.

Also at x — y,

((6d)fu)kl...kp = -V*VtCHfcl...fcp - ¿(-l^VV^/u)*,
1^=1

= (-VlVJ)ukl...kp + f(-VlVluJ)kl...kp

-J2(-ir(^kjHkl...h...kp
1/=1

-/¿(-D^vfc^tfci

m        .,        p
= YtUJ + 6dw-2tu

We now substitute the asymptotic expansion in for each heat kernel in (1.10)

and apply the lemma. If we abbreviate /M tr adbCl(x,x) by JM adbCl, etc., the
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result is

±fc—m/2

k-m/2

f N
/   a V) 6dCqktk~m'2

Jm    ,._nk=0

+ /.■(V)£*k-m/2

N

+ f af^SdCl-1^-^2
Jm    .„fc=0

m — 9 + 1

2í
+       a

Jm

f      N

7«E<

-/.-(öS*

N

E^r1«k-m/2

k=0

d6Cq,tk~m/2

k-m/2 _i_ f-\/j.N-m/2\ dt

at s = 0.

The error term comes from applying c¡¿ and ¿d to the error term in (1.2). It follows

from the estimates used in constructing the C£ in [P] that the new error is indeed

0(tN~m'2). We can now perform the t integration. This gives, with some terms

omitted,

(1.12)

K(°) (4rr)W2r(s) E- t. 1 ,i_.A( ~adëcqk+1)
_y^os-k-m/2+l\JM k    j

N

k=0

9+1
s + k 1    (¡*zr)+...+m

at s = 0.

Note we choose N and s so that s + k — m/2 and s + k — m/2 — 1 do not equal —1.

T(s) has a simple pole at s = 0 with residue 1, so nonzero terms occur on the right

in (1.12) only when k — m/2 — 1 is in the first sum, k = m/2 in the second sum,

etc. This gives the final variational formula.
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THEOREM 1.13.   Let M be an oriented compact manifold of even dimension m

with metric p.  Then

oá(0) =
i

(47r)m/2 - / otdSC^f - *±± /
Jm ¿    Jm

+ /„ ^.i- + (ï - «) /„ <^ + /„ «Mcwt,

m - q +

tfere adÄC^Ja- . means tr adr)C''T+/i
1 m/ 2-

with adè applied in the x variable, etc.

The only dependence of ¿ç9(0) in the direction of variation is in a, i.e., in the

variation of *p. This is a bit surprising since Ap = ±d*pd*p±*pd*pd depends on

the metric both in *p and in manifold derivatives of *p. It is also surprising that

information from dimensions q ± 1 appears (see Proposition 1.28).

If we vary p in its own direction by setting pf = X2p for A 6 R — {0}, then

d

du
[l + u\2)m'2-q*c

u=0

on q-forms, and soa = (m/2 - q)X2 ■ Id on q-forms. Also, under the change p —>

(1 + u\2)p = pu, the eigenvalues {An} of A9 go to the eigenvalues {(1 + uA2)-2An}

of APu. Thus f9u(s) = (1 + uA2)2ac9(s), so 6$(0) = 0 for this variation. This

direction therefore leads to global relations Aq among the C^.

Corollary i.14.

(Aq)     0=   (| -q-l)

+
(?-«)[/„'

in~2

¡m

[  d6Cqmy2_f
Jm

(

9+1
/    C+/2Jm

6dCq
/2-1

+

H7-'+1- )[/ SdC._
' Um

9-1

i/2-l

(Bq)    0 -o + l

+ ^-q)[-fM

tdCr/l +

m

7

+

m

m

'M

9 + -I
'A

**%„.

2

9 +

°m/2

M<%/2- sJ M

-I
J M

,-tq-l

°m/2

cq
°m/2

£?o is the same as Ac,. Bq then follows by subtracting B9_i from Aq. In other

words, Aq — 5q_i + Bq, so the 59 would seem to be a more basic identity.

It is not the case that Aq is the integral of a pointwise identity. In fact, a metric

p is a critical point for Ç9(0), considered as a function on the set of all metrics

conformai to p, if and only if Aq vanishes pointwise. To see this, we let pi = bip,

where ¿¿ approaches a delta function at a fixed iGMasi goes to infinity. The

corresponding at is (m/2 - q) ■ èl • Id, so letting i go to infinity gives the result.
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PROPOSITION 1.15. A metric p is a critical point for cq(0) within its conformai

class if and only if for all x G M,

Aq(x)   0 = (| - q - l) (-d£C^\_f - (i±!) C$)(x)

+ (y - 9) (^I/M + (y - fl) C/2 - ^C/2_x)(x)

+ (?-« + !) («^1 +(2^) C«)(.).

i/ere d¿Cm^2_1(a;) means tr d6C^,2l(x,y)\y=x, with d8 applied in the x variable.

We now show the existence of a metric g on the 4-torus T, conformally equivalent

to the flat metric, for which Aq(x) ^ 0 for some q. If no such metric exists, then

Ç9(0) is an invariant for the conformai class of the flat metric. Let Rijki be the

Riemann curvature tensor for g, and let

(1.16) R   = RijkiRxjkV,        Pji = Rijii'i        P   — PijPij'i        t = Pu

with summation convention. Then using (1.5)

0 = 32tt2x(T) =  Í R2 -\p2 + r2dvol,

167T2cg°(0) + 1 = Í R2 - 2p2 + $T2dvol,

(1.16a) 16tt2S¿(0) + 4 = f -22R2 + 172p2 - 40T2dvol.
Jt

The first equation is Avez's formula, and the other equations are in [G2]. The

conformai invariance of c9(0) would imply that the second and third equations are

also zero, since the integrands vanish for the flat metric. This implies / R2 = / p2 =

j t2 = 0, so Rijki = 0. In other words, g must be flat, which is a contradiction.

The Euler-Lagrange equations for arbitrary variations can also be derived from

Theorem 1.13. One computes a for an infinitesimal variation in each of the possible

m(m+ l)/2 directions at a point x G M, say in normal coordinates at x. Of course,

this only yields the equations in coordinate dependent form, and it may be difficult

to interpret the equations invariantly. For our purposes, it is enough to realize that

the Euler-Lagrange equations in normal coordinates will be expressions in the 0%

occuring in Aq and their derivatives.

Some classes of metrics which are critical points for c9(0) can be written down

immediately.

LEMMA l. 17. The following metrics are critical points for arbitrary variations

ofcq(0):
(a) flat metrics,
(b) any metric on a two dimensional manifold,

(c) the standard G-invariant metric on a homogeneous space G/H, G compact

and H closed, whose isotropy representation is irreducible,

(d) Einstein metrics on a four dimensional manifold.

PROOF, (a) A flat metric has the same heat kernel asymptotics as Euclidean

space. In Euclidean space, Cç,(x,y) = Yl¡ j dx1 ®dyJ in multi-index notation, and

Cqk(x,y) =0forfc>0.



544 STEVEN ROSENBERG

(b) In two dimensions,

[MS]. The Gauss-Bonnet Theorem shows that c°(0) and c2(0) are independent of

the metric. Çx(0) is then independent of the metric by (1.6). For just conformai

variations we could also prove (b) by noting that An(x) is the same as (1.3) at

x = y.

(c) The G-invariant metric on an isotropy irreducible homogeneous space is crit-

ical for every variational problem which is invariant under the natural action of the

diffeomorphism group and which is scale invariant (i.e. independent of p >—> X2p).

This is a theorem of Bleecker [Bl].

(d) In four dimensions, f9(0) = JM AR2 + Bp2 + Cr2dvol, where A, B, C are

constants depending only on q [G2].

It is a result of Terng [T] that Einstein metrics satisfy 8 JM R2 — 8 fM p2 =

^Mr2=0.

Thus c9(0) is an invariant of the connected components of Einstein metrics on

a four dimensional manifold. In particular, Ç9(0) is an invariant on the family of

metrics produced by Yau's solution of the Calabi conjecture on a K3 surface. No

other nontrivial families of Einstein metrics seem to be known. In any case, the

Einstein metrics are known to form only a finite dimensional space [BE].

We can obtain a new class of critical metrics by using Bleecker's result along

with a Hirzebruch Proportionality argument from [CGW]. First we need some

definitions. We call a Lagrangian £(g) local if it is given by integration over M of

a top dimensional form f(x)dvol(x), where f(x) is a smooth function of the metric

and its derivatives at x. We also say that a Lagrangian £(<?) has weight k if scaling

the metric g i—> X2g has the effect Z(g) *—► X~k£(<?). As usual, if £(g) is not scale

invariant (i.e. of weight 0), then we restrict our attention to metrics of volume one.

THEOREM l. 18. Let £(g) be a local Lagrangian of fixed weight k on the space of

metrics. Let M = T\G/K be the quotient of a symmetric space G/K by a discrete,

torsion free, cocompact subgroup T. Then the canonical G-invariant metric on M

of volume one is a critical point for ¿(g).

PROOF. Since t(g) is local, the standard calculus of variations techniques will

yield a symmetric matrix of Euler-Lagrange equations of the form (Pij(x,g)) = 0,

where P(x, g) is a local expression in the metric at x G M. (This is under the

assumption that £(g) is scale invariant. If not, the constraint on the volume of g

leads to (Pi:¡(x, g)) — C • (gíj(x)) for some constant C.) If G/K is compact, the T-

invariance of the metric implies that G/K has the same Euler-Lagrange equations

as T\G/K. By Bleecker's theorem, the canonical metric on G/K is critical, so the

equations will be satisfied on G/K and hence on F\G/K.

Assume G/K is noncompact. Since f(x)dvol(x) is a well defined form, the Euler-

Lagrange equations will be invariant expressions in the metric. By [ABP, §2], in

normal coordinates f(x) is an expression in the curvature tensor and its covariant

derivatives. These equations are independent of x, since G acts transitively on G/K

by isometries, and in fact the covariant derivative terms vanish since the curvature

tensor is parallel.
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The volume form is of weight —m = — dim M, so each Pi3(x, g) is of weight k+m.

The components Rijki of the curvature tensor are of weight 2, so Pij(x, g) must be

a sum of terms, each of which is the product of (k + m)/2 curvature components.

(In particular, k + m must be even and k > —m.)

On the compact dual symmetric space G'/K, the curvatures in the invariant

metric g' are minus those of G/K, so Pl3(x,g') on G'/K is (-l)(-k+m'>/2Plj(x,g)

for the invariant metric g on T\G/K. In the unconstrained case, (Pij(x, g')) = 0

on G'/K by Bleecker's theorem, and hence (Pij(x,g)) e 0 on T\G/K. In the

constrained case, we have (Pij(eK,g')) = C ■ (%) in normal coordinates at the

identity coset eK G G'/K, and hence (Pl3(eK,g)) — C■ (¿v,) in normal coordinates

at eK in T\G/K.

Thus the canonical metric on T\G/K is critical for JM Ck(g) for every k and

therefore critical for cq(k) (or its residue) for k = m/2, m/2 — 1,_ In particular,

the integrands Aq(x) and Bq(x) in Corollary 1.14 vanish pointwise for this metric.

We would now like to examine Ag(x) more closely. Since Aq(x) is a top dimen-

sional form whose integral is zero, Aq(x) is exact by de Rham's Theorem. In fact,

finding a form 9 with dO = Aq will lead us to a simpler Euler-Lagrange equation

for conformai variations (Proposition 1.28). To find 6, we first have to define a

pointwise zeta function and compute its variation.

DEFINITION 1.19. Let w be a differential form on a manifold M. For x G M,

define w2(x) by u(x) A *u>(x) = uj2(x)dvol(x).

Now let {4>n} be an orthonormal basis of L2 g-forms on M consisting of eigen-

forms of the Laplacian. We define the pointwise zeta function by

cq(s,x)
4>l(x)

A„#0

x G M.

We quickly sketch the convergence of çq(s,x). Let {oJi}k=l denote an orthonormal

basis of harmonic Q-forms. We define ßq(x), the qth local Betti number at x, to be

Yli—i w?(x)- Note that jM ßq(x)dvol(x) = ßq, the qth Betti number. Then

çq(s,x)
1    fc

W)Jo
ís_1(* tr(e9(i,x,x))-/3,(x))dt

(for us, taking the trace yields a top dimensional form, so we need the extra star op-

erator). This gives the range of convergence of çq(s, x) and its analytic continuation

as with c9(s). Thus ?9(0,x) = * trCqk(x,x)~ßq(x), and çq(s) = ¡Mçq(x,s)dvol(x).

The calculation leading up to Theorem 1.13 had two global steps, equations (1.7)

and (1.8). In computing

¿c9(0,x) i» L * tre9(i, x,x) I dt    at s = 0
u=0
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(1.7) must be replaced by the more complicated term [RS, pp. 198-199]

tre9(i,x,x)

rt

(1-20) j0
et

du

= f tr[((6ad-a8d-da8 + ad8)e-t'Aq)xeq(t-t',x,y)}dt'
Jo

= /    tr[(8ad-a8d-da8+ ad8)xeq(t,x,y)}dt'
Jo

— t tr[(¿ad - a8d - dab + ad6)xeq (t,x,y)\

by the semigroup property of the heat kernel. The subscript x denotes the variable

of differentiation. Since we are working locally now, we cannot move a out in front

as in (1.8). Thus the variation of the pointwise zeta function involves manifold

derivatives of a. We could obtain a formula for ¿ç(0, x) by proving a lemma analo-

gous to (1.11) for dab and bad, but for our purposes we will just consider variations

in the directions of the metric, i.e. a = (m/2 — q)X2 ■ Id on g-forms. In this case,

(1.20) reduces to -A2í tr(A9e9(i,x, y)). Therefore for these variations we get

(1.21) 0 = ¿(c9(0, x)dvol(x)) = -^ f  -ts tr(A9e9(i, x, y))dt.
I» Jo

Using the product rule for the Laplacian (just add the equations in 1.11), we obtain

as before
m

°= y teCqm/2(x,x) +trAxCqm/2_f(x,y).

This local identity is in itself nothing new, as it is just (1.3) at x = y. The real

interest is in (1.21). For a = (m/2 — q)X2 ■ Id, we claim that

- tr A9e9(i, x, y) + tr (-adbeq+1 (t, x, y) + abdeq(t, x, y)

+ abdeq~l(t,x,y) - adbeq(t,x,y)) = d9

for an explicitly computable (m — 1) dimensional form 9 = 9(t). We will also

produce an asymptotic expansion 9 ~ (l/(47ri)m/2) J2k @k(x)tk- Assuming this, we

will have

i    r1
0==-^ /   ts (d9(t)-tr(-adbeq+1(t,x,y) + abdeq(t,x,y)

1 (s) Jo

+ abdeq~l(t,x,y) - adbeq(t,x,y))) dt.

Substituting the asymptotic expansion for 9 and preceding as in Theorem 1.13 will

give us

(1.22) 0 = d6m/2(x) - Aq(x).

To write down 9, we first recall the Hodge Decomposition for smooth q-forms,

G°°A9 = Hq ® dG°°A9_1 © ¿C°°A9+1, where Hq denotes the harmonic q-forms.

We choose an orthonormal basis of eigenforms of A9 of the form {ün} U {u'n} U

{<}, where {ün}, {<}, and {<} are bases of Hq, dG^A9"1, and ¿G°°A9+1

respectively. We denote the corresponding eigenvalues by 0, {A^}, and {A^}. We

let {wn}, {w'n}, and {w'ñ} denote the corresponding eigenforms for (q - l)-forms,

with eigenvalues 0, {u'n}, and {v'ñ}, and for (q + l)-forms we use the eigenforms

{¿„}, {z'n}, and {z'n}, with eigenvalues 0, {V4h and Wn)- ïn wnat follows, we

will denote a(x) A *ß(x) by tra ® ß(x,y) even if a and ß have different degrees.
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LEMMA  1.23.   For a — (m/2 - q) ■ Id on q-forms,

- tr A9e9(i, x, y) + tr( - (adb)xeq+1(t, x, y) + (abd)xeq(t, x, y)

+ (abd)xeq~l(t,x,y) - (adb)xeq(t,x,y)) = d9,

where

9= -(m/2-q- l)tr dyeq(t,x,y) - (m/2 - q + l)trdyeq~1(t,x,y).

PROOF. Let {An} denote all the eigenvalues of A9. The difference of the traces

in (1.23) is

- Y^ e~KtXnun A *un - (y - ç - 1 j 53 e'^ip'nZn A *zn

+ (j - «) E e~x':t «A *<+{j - «+1) E *-"-'« a *<

-(f-9)Ee"A"tA"<A<

since A|¿G°°A* — ¿d and A|dG°°A* = db. Splitting the first term into a sum over

{X'n} and {A^} gives

(? -a -0 [Ee~A;:i «A *< - E *-**«A <
(1 24)

+ (f - 9 + l)   [E «"^ Vn< A *< - E e"A;tX'n< A *<    •

It is well known that d + b taking even forms to odd forms is an isomorphism for

each nonzero eigenspace of the Laplacian on even forms. The Hodge Decomposition

then implies that the set {A^} , with each X'n repeated with multiplicity, is equal

to {tp'n}, repeated to multiplicity. By the d + b isomorphism, du'n is an eigenform

for db with eigenvalue A^. Moreover, the L2 norm of du'n is

||d<||2 = jdu'n A *d< = jbdu'n A *< = X'n.

Similarly du'/ is orthogonal to du" if i ^ j. We can therefore replace each z'n by

(X'ñ)~x/2du'n as an orthogonal basis of dG°°A9. By the same argument for {w'ñ}

and {u'n}, (1.24) becomes

(?-«-•)[£
e-^xy; a *u>.n~J2' 'x'^du'l A *du:]

(1.25) + (| -,+ 1) [2e-;V>; A .< - X;e-<'<¡< A .¿<] .

Now

0 = -(m/2 - q - 1) 5>-*ï«< A *d< - (| - 9 + l) £ e-"«V A *d<,

since dy kills the H* and dG°°A* summands in e*(t,x,y). We compute

(1.26)

dé,= (|-9-l)[-^e-^d<A*d<-(-l)9^e-^<Ad*d<

+ (y - 9 + l) [- E e-^dK A *d< - (-1)9"1 ^ e"«^ A d * d<

= (y - 9 - l) [- E e~Ktd< A *d< + E e~A;íí< A *¿d<

im 9 + l) [- 53 e-"" *d< A *d< + J]] «"""'«'ï A *¿d<
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By the definition of {<} and {w'ff}, (1.25) and (1.26) agree.

Thus

, ( e-r2(x,y)/it   (N X

2 - « -l) tvdy {-JÂ^rr (E <*(*.»)'* + 0{tN))

m \ ( p-r2(x,y)/4t   (  N

y-g + l)trd^ (47rt)m/2   i^crHx^ + O^)

Since dyr2(x,y)\x=y = 0 and dO(tN) = 0(tN) as before, we have

N

-(?"9 + 0(>í^Etrd^-iífc + o(í
fc=0

By (1-22), this gives us the desired expression for Aq(x):

(1.27)   (^T'2Aq(x) = d [- (| - q - l) tr dyCqm/2 - (y - q + l) tr d,G^' •

This equation leads to a much simpler formulation for the Euler-Lagrange equa-

tion for a metric critical for ç9(0) within its conformai class. Note that as expected

the equation in (1.28) only depends on information in dimension q.

PROPOSITION 1.28. A metric is critical for c9(0) within its conformai class if

and only if

(m/2 - q - l)tv dyCqm/2 + (m/2 - q + l)tr dyCqm/\

is closed. Equivalently, a metric is critical if and only if

(m/2 - q - l)(trdxdyCqm/2 - tv(bd)xCqm/2)

+ (m/2 - q + l)(tr(db)xCqm/2 - tr bxbyCqm/2) = 0.

PROOF. We first claim we can replace dyC^ff,2 in (1.27) by ¿xG^/2. The identity

¿A9 = A9_1¿ yields be~tA   = e~tA     8. Then for any smooth q-form qt>,

8e-tAqcj>(x) = Í8xeq(t,x,y) A *ycb(y),

e
-tA"-1. 8(p(x) =  / e9   1(t,x,y)A*y6y<l>(y)=      dyeq   l(t, x,y) A *y(b(y).

Thus 8xeq(t, x, y) = dyeq~l(t, x, y). Plugging in the asymptotics for the heat kernels

gives the claim.

Next, we note that if a and ß are g-forms,

d(a A *ß) = da A*ß + a A * * d* ß - tr dx(a®ß) - tr 8y(a® ß)

(this uses the even dimensionality of the manifold). G^/2 is approximated arbitrar-

ily closely in the G°° topology by linear combinations of double forms a(x) ®ß(y),
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so (1.27) becomes

(4r)m'2Aq(x) = -(m/2 - q - l)[trdxdyCqm/2 - tr8ydyCqm/2]

- (m/2 - q + l)[tr dx8xCqm/2 - tr 8v8xCqm/2}.

Finally, as above we can replace (8d)yC^l,2 by (8d)xC^n,2. Since a metric is critical

within its conformai class if and only if Aq(x) = 0, this finishes the proof.

We end this section by remarking that all the results for cq (0) can be extended to

cq(-n), n G Z+, and res f9(n), 0 < n < m/2. One simply picks out the appropriate

Gfe in (1.12) at s = ±n. More specifically, let A9 denote the integrals in brackets

in Theorem 1.13, with each subscript m/2 replaced by m/2 + n. Then

(1.29) t4Uj     x

8 reSf(n) = (47r)W2(n-i)! " Al»>        ° < n ^ m/2' n G Z'

It is also easy to verify that if m = dim M is odd, then

(1.30) ¿resc9f^ - n) = ,    .    .    *    .„-r^4'      /„        n G Z+ U {0}.
y       ' *   V 2        /      (47r)m/2r(m/2 - n)   "-m'2 v ;

For future use, we note that (1.29) and (1.30) are equivalent to

2. In this section we will consider the variation of (f9)'(0) = dç9(s)/ds|s=rj. The

motivation is again a topological invariance associated to f'(0). Recall that exterior

differentiation and the Hodge star on M extend to operators on forms with values

in a bundle E associated to an orthogonal representation of iti(M). Therefore we

can consider zeta functions associated to a metric on M and such a bundle E. If E

is acyclic, i.e., E has trivial cohomology groups, then Ray and Singer conjectured

that

»53(-l)W)'(0) = In t(M,E)
\=i

where t(M, E) is the Reidemeister torsion. This was proven independently by

Cheeger and Müller.

Throughout this section M can be either odd or even dimensional. All the

computations will be done for ordinary Q-forms, but the results extend immediately

to forms with values in a bundle, acyclic or not, associated to a representation of

m(M).
The calculation of the variation proceeds much as before. We have

_d_
ds

d_
du r(») Vo

is-'u(e-'û: ~Pq)dt
u=0

I 3=0

To keep the notation manageable, we give a definition.
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DEFINITION  2.1.  Let

I(a,q) = -adbe~tAq+1 + abde~tAq + a8de-tAq~l - ad8e~tAq.

Previously, we broke the integral up into contributions from zero to one and from

one to infinity, but here it is helpful to introduce a cutoff parameter p. Thus

d \   1     l"p 1     f°°
HçQm = ds s__0 [rWo tS TrIMdt + W)JP  * TlI{a'q)dt.

= Y^ftslntKI(a,q)dt+(^^-r\ J" ta Tr I (a, q)dt

+ f£)/    ts \ntTr I (a, q)dt+(^f^r) j°° ta Tr I (a, q)dt

at s = 0.

The integral in the third term is analytic at s = 0, so the zero of l/r(s) at s = 0

kills this term. We now substitute the heat kernel asymptotics into I(a, q) in the

first two integrals and apply Lemma 1.11. The result is, for N S> 0,

ww = w) gf «•**- -"n* y=* /„<—«r -•>)
+ rTT ÍPts\ntO(tN-m'2)dt

1 (s) Jo

+ (rM)'r,'^/2°('")'"

+ (fn)   /    íSTr7(a'9)dí    ats = 0.

We denote the terms on the right in (2.2) by A, B, C, D, and E respectively. The

integral over M in A and G is

/ -ad8Cr - (^) «er + ««A* + (^) aG«

+ «¿dGr1 + (m7 + 1) «er1 - ad¿G« - (|) aCÏ.

Since
rJ3+lfp   „ rß+x   Í

for Re(ß) > -1, A becomes

J_ ^     p^k-m/2      / _ 1 \   / 1

r(s)^s + fc-m/2 VnP     s + fc-m/2/ V(47r)m/2   k~m'2

I pS+N-m/2+l        / 1

' hip
T(s) s + N - m/2 +1\   y     s + N - m/2 + 1,

-^ Í (-ad8CqN+1 + a8dC% + a8dCqN~l - ad8CqN)j     at s = 0.
(4
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An is defined at the end of §1.  If M is odd dimensional, k never equals m/2, so

A = 0 at s — 0. Otherwise, the only contribution to (2.2) from A is

(2.3) lnp (IA  \   nAZ) + lim -- (lA  \   /9A9) .
v     ' \(47r)m/       /     s^°    5 \(47r)m/2     /

The apparent pole term in (2.3) is cancelled by G. Since d/ds|s=or7jr = 1) C ls

N „s+k-m/2 i „s+iV-m/2 + 1
y L ¿a ,        r

^2-4) ¿^  * 4- h _ m /9 '  Uir\m/2 Ak-m./2 +s + fc-m/2    (4?r)m/2   fc-m/a     s + a/_ m/2 + 1

jv+1 + a8dCqN + aSdCff1 - auv*

k=0

-J—= / (-ad¿G£fl 4- a¿dG^ + a¿dG971 - ad¿G^)    at s - 0.
(4

Notice the pole term at fc = m/2.

The integral in B is

„N+s+l-m/2

0[tt-;-7^(lnp-
,JV + s|l-m/2\    r     N + s + l-m/2/

for fixed p, so ¿? vanishes at s = 0. Clearly D contributes an 0(pN+1~m/2) term.

Finally, there is no problem setting s = 0 in E. In the following theorem, we have

used (1.31) to replace Aqk_m,2 terms by ¿resr(m/2 - fc)ç9(m/2 — fc).

THEOREM 2.5.   The variation of(cq)'(0) is given by

8(çq)'(0) = (\np)bçq(0)+    53    |^Í¿resr(|-fc)c9(|-fc)
k=0

k^m/2

roo
-tA"+1   ,  „.cj.-tA"   ,  ^c^-tA"-1_,f„-tA*N+ /     Tr [~adbe-tA*     + aSde^ + abde'^     - ad8e~tA"' J dt

+ 0(pN+1~m'2).

Note (lnp)¿c9(0) = 0 if M is odd dimensional.

The variational formula (2.5) looks substantially more complicated than the ex-

pression (1.13) for ¿c(0). In particular, the integral in (2.5) is a nonlocal expression,

reflecting the nonlocal character of c'(0). Nevertheless, in some instances we can

explicitly solve the conformai Euler-Lagrange equation for c'(0), which we were

unable to do for ç(0). The added control here comes from recognizing (2.5) to be a

precise version of a formal expression for 8ç'(0). For

fJo
Tr (-ad8e~tA"+1 + a8de~tAq + a8de~tAq" - adbe~tAq\ dt

f°° 1  d
= T-r-Tr(e-tA"-Pu)di    atu = 0

Jo    t du

-L — Ve'^'di    atu = 0
dit ¿—'¡o    t du

where A9 has nonzero spectrum {A£}. The last integral is formally

roo _    \

-53/   xy-^dt = -J2ir atu = 0
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with Á„ = dX^/du\u=o and A„ = Xn. This sum is

logI]A^¿c'(0)
yd_

du
u=0

since c'(0) is formally "minus the log of the determinant of the Laplacian" [RS,

p. 151]. Thus Theorem 2.5 should be regarded as a regularization, via the added

parameter p, of the formal expression 8(cq)'(Q) = f^° Tr I(a, q)dt. In addition,

/0°° e~tAdt = A-1 by the spectral theorem, at least for A invertible. Thus formally

(2.6) ¿c'(0) = -Tr(¿A-A-1).

For a finite dimensional matrix A, the identity — logdet A = — Tr log A implies

(2.6), so Theorem 2.5 should be thought of as the correct infinite dimensional

analogue of (2.6) for finite dimensional matrices.

We note in passing that the corresponding formal calculation for ¿ç(0) is

i       r°o J

¿c(0) = — /     ts-l~Tr(e-iA- - Pu)dt    ats = 0
1 (s) Jo du

= W)-6m=0-

In analogy with the last calculation, this may be interpreted as "correct" up to the

local factors in Theorem 1.13.

Since the nonlocal term in (2.5) is unavoidable, it is useful to investigate when we

can eliminate the local terms. This is always possible when M is two dimensional.

THEOREM 2.7. Let M be an oriented, compact, two dimensional manifold with

metric g. For q ~ 0,1,2, (f9)'(0) is critical at g for area preserving variations if

and only if g has constant curvature.

Thus by the uniformization theorem there is a unique critical point for (f9)'(0)

within each conformai class of metrics. One easily checks that the theorem ex-

tends to bundles E associated to representations of 7Ti(M). In particular, when

E is acyclic J2( — l)q(çq)'(0) is independent of the metric, but (f9)'(0) is never an

invariant even within a conformai class.

PROOF. Let ç = ç°. For area preserving variations, ¿res T(l)ç(l) = 6 fMtrC° =

¿area (M) = 0. By (1.17b), ¿resr(0)c(0) = 0. We may now let p go to zero in

(2.5) to obtain ¿ç'(0) = /0°° Tr I(a, 0)dt. Therefore, the actual variation agrees with

the formal variation. As in §1, the Euler-Lagrange equation for ç'(0) is obtained

by taking area preserving variations which approach a delta function 8X, x G M,

times the original metric. One easily checks that a approaches 8X ■ Id on 0-forms

and that Trl(a,0) approaches trI(A°e_tA ), the pointwise trace of the kernel of

A°e~tA   at x. Thus the Euler-Lagrange equation is

/•oo

(2.8) /     tr:i;(A0e-tA0)di = G
Jo

where G is a constant arising from the area constraint.

We now simplify (2.8).



VARIATION OF DE RHAM ZETA FUNCTION r,r,;s

LEMMA 2.9.   Let A be the Laplacian on q-forms with pointwise zeta functions

ç(s,x) on a manifold M.  Then J0°° trI(Ae_tA)di = c(0, x).

PROOF. Note that trx(Ae~iA) = -c^tr^e-^). For Re(s) » 0, integration by

parts gives

/■oo /*oo

/     tstrx(Ae~tA)dt = s /     í^tr^e"^ - P)dt
Jo Jo

/»oo

7o ¡
ts'\trx(e-tA)-ßq(x))dt.

There are no boundary contributions since trx(e      ) — ßq(x) is exponentially de-

creasing as t —► oo and is 0(i~dimM/2) as t —> 0. We must show that at s = 0

roo i roo

s /     ?-l(tTx(e-tA) - ßq(x))dt = —- /     i-^tr^e-**) - ßq(x))dt
Jo t \s) Jo

since the right side is f(0, x).   Plugging in the kernel asymptotics as usual gives

trxG^,2(x, x) — ßq(x) if m = dim M is even, or —ßq(x) if m is odd, on both sides.

Thus the Euler-Lagrange equation for (f°)'(0) is c(0, x) = G. Since ßo(x) =

area(M)-1 and trG°(x) = r(x)/127r, where r is the scalar curvature, a metric is

critical for (f°)'(0) if and only if it is of constant scalar curvature. The result for

ç1 follows by repeating this argument on 1-forms, while the result for c2 = c° is

immediate.

Even the case of metrics on S1 is not entirely trivial. All metrics of fixed length

on S1 are isometric via reparametrization by arc length, so (f°)'(0) = (fx)'(0) is

a length invariant. It is well known that the stationary phase approximation to

the path integral for the heat kernel on R gives the exact formula if one defines

(det A)1/2 to be 27T on S1. This definition coincides with the zeta function reg-

ularization det A = exp(—c'(0)), as we shall now compute. The following lemma

simplifies a calculation due to Lerch (1894) in a more general context (cf. [C, §8]).

LEMMA 2.10.   For the standard metric on Sa of length 2it, (t°)'(0) = - ln47t2.

PROOF. In this metric A0 = -d2/d92 has the orthonormal basis {n^1/2 cosnf?,

Tt-1/2sinn9} with eigenvalues {0,1,1,4,4,...}. Thus ç°(s) = 2^=1l/(n2)s =

2çr(2s), where çR is the Riemann zeta function. Therefore (c°)'(0) = 4c¿(0).

We will use the following elementary property of the Riemann zeta function [R,

§38]. ForRe(s) > -1,

liii r°°
te(s) = jyyj + g + J2S ~ 2~s(s + ^ J     B^X ~ ^X~ 2dx

where B2(x) = x2 — x+1/6 and [x] is the greatest integer in x. By Taylor's formula,

/" B2(x - [x])x-s-2dx = J™ B2(x - \x))x-2dx + 0(s), so

(2.11) ^(0) = -l+l-I^OOß2(a;-[x]) x 2dx.
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We compute

"'—-<-Hn
/OO o°       /    r

B2(x-[x])x"2dx = 53     /
n=l ^™

oo     / 2 \

= 53 (n+ ! -2nln(n + 1)-^— +2nlnn)
n=l   ^ ^

oo      s \ 1

+ E(-Mn+D--^I+lnn+lj+-

oo oo 1

= EA» + Es« + 6-
n=l n=l

Now
N N N+l

53 sn = -in(iv+i)+53 — = -in(iv+i)+E^-1-
n = l n=l n=l

By the definition of Euler's constant 7, X^^Li -ßn = 7 — 1- Also,

N N     , ,

Y,An = -2N\n(N + l) + 2N + YJ (--^-+21nnJ
n=l n=l   ^ '

= -27VlnAT-2Mn(^-j-1 ) + 2AT + V-?_+21niV!
V   N   ) ^    n+l
N n=l

= -2NmN-21n(l + ±y + 2N+(j^(-^^+ln(N + l)j

+ 21nN\-lnN -\n(^-^ j .

In the last expression, as N —> 00 the second term approaches —2, the fourth

approaches — 7 + 1, and the last approaches zero. Moreover, by Stirling's formula

In AM-A/In A/- ¿ In A + A-> In v^, so ^=1 yl„ =-2 + 21n v/2^-7 +1. Thus

/;
B2(x- [x])x~2dx= -— +21n\/27r

6

and from (2.11) we get c'R(0) = - In y/2~ñ.

The crucial factor of 27t in Stirling's formula actually comes from Wallis' formula

(1656)

(2 12) * = 2-2- 4- 4- 6- 6-^       ; 2      1-3-3-5-5-7--

[R]. Following [C, §8], we will sketch a proof of Wallis' formula using the equality

of analytic and Reidemeister torsion. The square of the right side of (2.12) is

formally det A/det (A+ 1/4) for A on functions on S1. Since the right side of (2.12)

converges, one easily sees that its square must equal exp(—c^(0))/exp(—2ç'A(0)),

where A — | * d| + 1/4 on functions on S1. Now we know c^(0) = - ln47t2. Using

[C, §8], one checks that cA(s) = \ç(s/2) - 2s, where ç is the zeta function of the

flat ¿>0(2) bundle associated to the representation of 7ri(5x) = Z given by 1 —►
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(rotation by 7r). Computing ç'(0) by the Reidemeister torsion of this bundle, we

get ç'A(0) = - ln4. Thus the square of the right side of (2.12) is 7r2/4.

Other, more serious, instances of the interplay between formal and rigorous

expressions come from considering the eigenfunctions of the Laplacian. In fact,

we can characterize flat manifolds by an eigenfunction condition and flatness at a

point.

THEOREM 2.13. (a) Let E be a bundle with inner product and compatible con-

nection over Mn. Let {&} be an orthonormal basis of E-valued q-forms consisting

of eigenforms of the Laplacian. Then £^ <j>i(x)2 diverges for all x G M. However, if

dim M is odd, X^(<Ai(z)2 — 4>i(y))2 — 0 whenever the sum is absolutely convergent.

(b) Let E be the trivial R,-bundle.

(i) Let dimM = 2 and q = 0. If lZi(4>i(x)2 ~ 4>i(y)2) = 0 Vx,y G M, then M
has constant curvature.

(ii) Let dim M > 2. For any q, ifY^ii.4>i(x)2 -<t>i(y)2) exists for points x, y G M,
then t(x) — r(y).

(iii) Let dimM > 4. £¿(>i(:r)2 - My)2) = 0 Wx,y G M for q = 0,1,2 and M
is flat at some point x if and only if M is flat. If dim > 4, we need only assume

the sums exist and M is flat at a point.

(iv) Let dimM = 3. ¿t(^(x)2 - ^(y)2)At1/2 = 0 Vx,y G M for q = 0, 1 and

M is flat at some point x if and only if M is flat.

PROOF, (a) If Y,4>i{x)2 exists, then so does ¿Zx^ofairfK" for Re(s) > °-
However, for Re(s) 3> 0 this sum is c(s,x), which has a simple pole with residue

*trCo(x,x) =1     I    at s = —

(see [G2]). Similarly, if Ylx^o^i^)2 — 4>i(y)2) exists, it must equal c(0, x)-c(0, y).

In odd dimensions, c(0,x) - c(0,y) = - (Ea1=o(^W2 ~ <M2/)2))-

(b) If dimM = 2, C°(0,x) = |r(x) - ß0(x) = \t(x) - vol(M)"1. This proves

(i). For (ii), we note that the residue of ç(s, x) at s = n/2 - 1 is a nonzero multiple

of t(x). If the sum exists, the residue of c(s, x) — c(s, y) must vanish.

For (iii), first let dimM = 4. Combining equations (1.6) and (1.16a), we see

that ^(Mx)2 - My)2) = 0 for q = 0,1,2 implies R2(x) = R2(y). (Note that
(1.16a) holds pointwise for f(0, x), and summing over all i removes the local Betti

number contribution.) If Rijki(x) = 0, then R2 = 0 on M. Conversely, if M is flat

the Bieberbach Theorem implies M is the quotient of the torus T4 by a discrete

subgroup. The T4-invariance of the metric implies that the Laplacians and hence

their eigenspaces are T4-invariant. Hence the sum is zero on each eigenspace.

If dimM > 4, the right side of (1.16a) (without the integral sign) represents the

residue of ç(s, x) at s = n/2 — 2. (The formula for the residue for two forms is the

same as trG2(x,x) on a four manifold, which we used above.)

The sum in (iv) is the formal expression for f (n/2 - 1, x) if n = 3. Since ç2 = ç1

in dimension 3, we have only two equations. Fortunately, in this dimension the

Ricci tensor determines the full curvature tensor, so the result follows as above.

We can prove one more result in dimension two by considering the Euler-

Lagrange equation for the nth eigenvalue of A0. Here we are viewing the nth

eigenvalue as a suitably defined function on the space of all metrics (see [B2]).
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COROLLARY 2.14. A metric on a compact, oriented surface which is critical

within its conformai class for all eigenvalues of A0 has constant curvature.

PROOF. In dimension two, a metric is critical for the nth eigenvalue if and only

if J2i ^¿(z)2 is constant in x G M, where {t/>¿} is an orthonormal basis of the nth

eigenspace [B2]. Thus ^¿(<£¿(z)2 - 4>i(y)2) = 0, so part (b)(i) of the Theorem

applies.

In higher dimensions the situation becomes more complicated. A metric must

satisfy an increasing number of conditions for its formal variational formula to

be valid. Moreover, in dimensions bigger than two the Euler-Lagrange equation

involves d¿ and ¿d—i.e. pieces of the Laplacians—so Lemma 2.9 cannot be applied.

We can give some examples of when the formal variational expression is valid, and

for these metrics we can write the Euler-Lagrange equation in an "explicit" nonlocal

form. In the next result, a bundle associated to an orthogonal representation of

7Ti(M) may be present, and variations are assumed to be volume preserving.

PROPOSITION 2.15. For the following metrics, the formal variation formula

¿(c9)'(0) = fQ°°TrI(a,q)dt is valid.

(a) A constant scalar curvature metric on a manifold of dimension n = 3, 4 or

5.
(b) The metric on a compact locally symmetric space T\G/K induced from the

G-invariant metric on G/K.

For any metric whose formal variational formula is valid, the Euler-Lagrange

equation for ¿(f9)'(0) is

- (m/2 - q + l)tr d8gq+1(x,x) + (m/2 - q)tr(8d - d8)gq(x,x)
(2.16) _,

+ (m/2 — q — l)tr 8dgq    (x, x) = constant.

Here gk is the kernel of the Green's operator Gk on k-forms (Gk is A 1 on
dc.ooAfc-i e SCooAk+i and Qk = o on Hky

PROOF, (a) In three dimensions we have for volume preserving variations

8(cq)'(t)) = p-ll28([  A-T\+0(p1,2)+ H Tr I(a,q)dt.

for some constant A. It is well known (see [PI, §12]) that 8 JM r = 0 for all varia-

tions precisely when the metric is Einstein. Since we are only working with confor-

mai variations, we can take the trace of the Einstein condition pij = C -g^ to obtain

the condition of constant scalar curvature as the Euler-Lagrange equation for con-

formal variations of JM r. Therefore, for these metrics ¿(c9)'(0) = /0°° Tr/(a, q)dt.

In dimension four, we have

8(çq)'(0)=p'18(f B-T^J+hip-ëtf CR2 + Dp2 + Et2\

/•OO

+ /     Tr7(a,ç)di
Jp

By Lemma 1.17 and the argument above, constant scalar curvature metrics are

critical for conformai variations of J R2, jp2, /t2. A similar argument works in

five dimensions.
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(b) By Theorem 1.18, the local terms in Theorem 2.5 vanish for a locally sym-

metric space.

The statement involving the Green's functions follows from Theorem 2.5 together

with the identity Gk = J0°° e~tA — PHkdt, which can be seen by writing out both

sides in their eigenfunction expansions.

REMARKS. (1) Of course trgk(x, x) does not exist. Implicit in Proposition 2.15

is the fact that for metrics whose formal variational formula is valid, (2.16) exists.

(2) One topic largely left out of this paper is critical point theory for arbitrary

variations. Conformai variations lead to manipulating trG^(x, x), while for arbi-

trary variations one must consider tr(aij)xCk(x, y) where the linear transformation

(aij) is one in the (i,j) slot and zero elsewhere. Unfortunately, although Ck(x,y)

has been computed for low values of q and fc [G3], the resulting system of Euler-

Lagrange equations is quite complicated.
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