The variation of the de Rham zeta function
HTML articles powered by AMS MathViewer
- by Steven Rosenberg
- Trans. Amer. Math. Soc. 299 (1987), 535-557
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869220-4
- PDF | Request permission
Abstract:
Special values of the zeta function $\zeta (s)$ for the Laplacian on forms $\Delta$ on a compact Riemannian manifold are known to have geometric significance. We compute the variation of these special values with respect to the variation of the metric and write down the Euler-Lagrange equation for conformal variations. The invariant metric on a locally symmetric space is shown to be critical for every local Lagrangian. We also compute the variation of $\zeta ’(0)$, or equivalently of det $\Delta$. Finally, flat manifolds are characterized by flatness at a point and a condition on the amplitudes of the eigenforms of $\Delta$.References
- M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279–330. MR 650828, DOI 10.1007/BF01425417
- David D. Bleecker, Critical Riemannian manifolds, J. Differential Geometry 14 (1979), no. 4, 599–608 (1981). MR 600616
- David Bleecker, Determination of a Riemannian metric from the first variation of its spectrum, Amer. J. Math. 107 (1985), no. 4, 815–831. MR 796904, DOI 10.2307/2374358
- M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969), 379–392. MR 266084
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322. MR 528965, DOI 10.2307/1971113
- Robert S. Cahn, Peter B. Gilkey, and Joseph A. Wolf, Heat equation, proportionality principle, and volume of fundamental domains, Differential geometry and relativity, Mathematical Phys. and Appl. Math., Vol. 3, Reidel, Dordrecht, 1976, pp. 43–54. MR 0436222
- Peter B. Gilkey, The spectral geometry of a Riemannian manifold, J. Differential Geometry 10 (1975), no. 4, 601–618. MR 400315
- Peter B. Gilkey, Spectral geometry of symmetric spaces, Trans. Amer. Math. Soc. 225 (1977), 341–353. MR 423258, DOI 10.1090/S0002-9947-1977-0423258-3
- Peter B. Gilkey, Recursion relations and the asymptotic behavior of the eigenvalues of the Laplacian, Compositio Math. 38 (1979), no. 2, 201–240. MR 528840
- H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1 (1967), no. 1, 43–69. MR 217739 R. Palais, Applications of the symmetric critically principle to mathematical physics and differential geometry, Sonderforschungsbereich 40, Universität Bonn.
- V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geometry 5 (1971), 233–249. MR 292114
- Hans Rademacher, Topics in analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 169, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman. MR 0364103 G. de Rham, Variétés différentiables, Hermann, Paris, 1960.
- D. B. Ray and I. M. Singer, $R$-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145–210. MR 295381, DOI 10.1016/0001-8708(71)90045-4 C. L. Terng, unpublished.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 535-557
- MSC: Primary 58G10; Secondary 58G25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869220-4
- MathSciNet review: 869220