A classification of simple Lie modules having a $1$-dimensional weight space
HTML articles powered by AMS MathViewer
- by D. J. Britten and F. W. Lemire
- Trans. Amer. Math. Soc. 299 (1987), 683-697
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869228-9
- PDF | Request permission
Abstract:
Let $L$ denote a simple Lie algebra over the complex numbers. In this paper, we classify and construct all simple $L$ modules which may be infinite dimensional but have at least one $1$-dimensional weight space. This completes the study begun earlier by the authors for the case of $L = {A_n}$. The approach presented here relies heavily on the results of Suren Fernando whose dissertation dealt with simple weight modules and their weight systems.References
- Didier Arnal and Georges Pinczon, Sur certaines représentations de l’algèbre de Lie $\textrm {SL}(2)$, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1369–A1372 (French). MR 277577
- Richard E. Block, The irreducible representations of the Lie algebra ${\mathfrak {s}}{\mathfrak {l}}(2)$ and of the Weyl algebra, Adv. in Math. 39 (1981), no. 1, 69–110. MR 605353, DOI 10.1016/0001-8708(81)90058-X
- I. Z. Bouwer, Standard representations of simple Lie algebras, Canadian J. Math. 20 (1968), 344–361. MR 224746, DOI 10.4153/CJM-1968-031-5
- D. J. Britten and F. W. Lemire, Irreducible representations of $A_{n}$ with a $1$-dimensional weight space, Trans. Amer. Math. Soc. 273 (1982), no. 2, 509–540. MR 667158, DOI 10.1090/S0002-9947-1982-0667158-4 —, On basic cycles of ${A_n}$, ${B_n}$, ${C_n}$, and ${D_n}$, Canad. J. Math. 37 (1985), 122-140.
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737 E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111-243. Suren L. Fernando, Simple weight modules of complex reductive Lie algebras, Ph. D. Thesis, Univ. of Wisconsin, 1983.
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
- F. W. Lemire, Irreducible representations of a simple Lie algebra admitting a one-dimensional weight space, Proc. Amer. Math. Soc. 19 (1968), 1161–1164. MR 231872, DOI 10.1090/S0002-9939-1968-0231872-3
- F. W. Lemire, Note on weight spaces of irreducible linear representations, Canad. Math. Bull. 11 (1968), 399–403. MR 235073, DOI 10.4153/CMB-1968-045-2
- F. W. Lemire, Weight spaces and irreducible representations of simple Lie algebras, Proc. Amer. Math. Soc. 22 (1969), 192–197. MR 243001, DOI 10.1090/S0002-9939-1969-0243001-1
- F. W. Lemire, One-dimensional representations of the cycle subalgebra of a semi-simple Lie algebra, Canad. Math. Bull. 13 (1970), 463–467. MR 281765, DOI 10.4153/CMB-1970-085-9 —, An irreducible representation of $\operatorname {sl} (2)$, Canad. Math. Bull. 17 (1974), 63-64.
- F. W. Lemire, A new family of irreducible representations of $A_{n}.$, Canad. Math. Bull. 18 (1975), no. 4, 543–546. MR 422365, DOI 10.4153/CMB-1975-098-4
- F. Lemire and M. Pap, $H$-finite irreducible representations of simple Lie algebras, Canadian J. Math. 31 (1979), no. 5, 1084–1106. MR 546961, DOI 10.4153/CJM-1979-100-5
- Adolf van den Hombergh, Sur des suites de racines dont la somme des termes est nulle, Bull. Soc. Math. France 102 (1974), 353–364 (French). MR 366998
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 299 (1987), 683-697
- MSC: Primary 17B10; Secondary 17B20
- DOI: https://doi.org/10.1090/S0002-9947-1987-0869228-9
- MathSciNet review: 869228