Eisenstein series and the Selberg trace formula. II
HTML articles powered by AMS MathViewer
- by H. Jacquet and D. Zagier
- Trans. Amer. Math. Soc. 300 (1987), 1-48
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871663-X
- PDF | Request permission
Abstract:
The integral of the kernel of the trace formula against an Eisenstein series is investigated. The analytic properties of this integral imply the divisibility of the convolution $L$-function attached to a form by the zeta function of the field.References
- Stephen S. Gelbart, Automorphic forms on adèle groups, Annals of Mathematics Studies, No. 83, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR 0379375
- Stephen Gelbart and Hervé Jacquet, Forms of $\textrm {GL}(2)$ from the analytic point of view, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 213–251. MR 546600
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
- Hervé Jacquet, Automorphic forms on $\textrm {GL}(2)$. Part II, Lecture Notes in Mathematics, Vol. 278, Springer-Verlag, Berlin-New York, 1972. MR 0562503
- David Kazhdan, On lifting, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 209–249. MR 748509, DOI 10.1007/BFb0073149
- Jean-Pierre Labesse, $L$-indistinguishable representations and trace formula for $\textrm {SL}(2)$, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 331–338. MR 0430167
- J.-P. Labesse and R. P. Langlands, $L$-indistinguishability for $\textrm {SL}(2)$, Canadian J. Math. 31 (1979), no. 4, 726–785. MR 540902, DOI 10.4153/CJM-1979-070-3
- Robert P. Langlands, Base change for $\textrm {GL}(2)$, Annals of Mathematics Studies, No. 96, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 574808
- Goro Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3) 31 (1975), no. 1, 79–98. MR 382176, DOI 10.1112/plms/s3-31.1.79
- D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 627, Springer, Berlin, 1977, pp. 105–169. MR 0485703
- Don Zagier, Eisenstein series and the Selberg trace formula. I, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Springer-Verlag, Berlin-New York, 1981, pp. 303–355. MR 633667
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 1-48
- MSC: Primary 11F70; Secondary 11F72, 22E55
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871663-X
- MathSciNet review: 871663