Knapp-Wallach Szegő integrals. II. The higher parabolic rank case
HTML articles powered by AMS MathViewer
- by B. E. Blank
- Trans. Amer. Math. Soc. 300 (1987), 49-59
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871664-1
- PDF | Request permission
Abstract:
Let $G$ be a connected reductive linear Lie group with compact center and real rank $l$. For each integer $k(1 \leqslant k \leqslant l)$ and each discrete series representation $\pi$ of $G$, an explicit embedding of $\pi$ into a generalized principal series representation induced from a parabolic subgroup of rank $k$ is given. The existence of such embeddings was proved by W. Schmid. In this paper an explicit integral formula with Szegö kernel is given which provides these mappings.References
- B. E. Blank, Embedding limits of discrete series of semisimple Lie groups, Canad. Math. Soc. Conf. Proc., vol. 1, Amer. Math. Soc., Providence, R. I., 1981, pp. 55-64.
- B. E. Blank, Knapp-Wallach Szegő integrals and generalized principal series representations: the parabolic rank one case, J. Funct. Anal. 60 (1985), no. 2, 127–145. MR 777234, DOI 10.1016/0022-1236(85)90048-5
- Harish-Chandra, Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241–318. MR 219665, DOI 10.1007/BF02391779
- Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. MR 219666, DOI 10.1007/BF02392813
- Harish-Chandra, On the theory of the Eisenstein integral, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), Lecture Notes in Math., Vol. 266, Springer, Berlin, 1972, pp. 123–149. MR 0399355
- Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Functional Analysis 19 (1975), 104–204. MR 0399356, DOI 10.1016/0022-1236(75)90034-8
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- A. W. Knapp, A Szegő kernel for discrete series, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 99–104. MR 0437682
- A. W. Knapp, Commutativity of intertwining operators for semisimple groups, Compositio Math. 46 (1982), no. 1, 33–84. MR 660154
- A. W. Knapp and N. R. Wallach, Szegö kernels associated with discrete series, Invent. Math. 34 (1976), no. 3, 163–200. MR 419686, DOI 10.1007/BF01403066
- A. W. Knapp and N. R. Wallach, Correction and addition: “Szegő kernels associated with discrete series” [Invent. Math. 34 (1976), no. 3, 163–200; MR 54 #7704], Invent. Math. 62 (1980/81), no. 2, 341–346. MR 595593, DOI 10.1007/BF01389165
- A. W. Knapp and Gregg J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. (2) 116 (1982), no. 2, 389–455. MR 672840, DOI 10.2307/2007066
- Adam Korányi and Joseph A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265–288. MR 174787, DOI 10.2307/1970616
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
- Wilfried Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 56–59. MR 225930, DOI 10.1073/pnas.59.1.56
- Wilfried Schmid, On the realization of the discrete series of a semisimple Lie group, Rice Univ. Stud. 56 (1970), no. 2, 99–108 (1971). MR 277668
- Wilfried Schmid, On the characters of the discrete series. The Hermitian symmetric case, Invent. Math. 30 (1975), no. 1, 47–144. MR 396854, DOI 10.1007/BF01389847
- V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, Vol. 576, Springer-Verlag, Berlin-New York, 1977. MR 0473111, DOI 10.1007/BFb0097814
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 49-59
- MSC: Primary 22E46; Secondary 22E30
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871664-1
- MathSciNet review: 871664